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Preface 

The International Energy Agency 

The International Energy Agency (IEA) was established in 1974 within the Organisation for Economic Co-operation and Development 

(OECD) framework to implement an international energy programme. A basic aim of the IEA is to foster international co-operation 

among the 30 IEA participating countries and to increase energy security through energy research, development and demonstration in 

the fields of technologies for energy efficiency and renewable energy sources.  

The IEA Energy in Buildings and Communities Programme 

The IEA coordinates international energy research and development (R&D) activities through a comprehensive Technology 

Collaboration Programmes (TCPs) portfolio. The mission of the IEA Energy in Buildings and Communities (IEA EBC) TCP is to support 

the acceleration of the transformation of the built environment towards more energy efficient and sustainable buildings and communities, 

by the development and dissemination of knowledge, technologies and processes and other solutions through international collaborative 

research and open innovation. (Until 2013, the IEA EBC Programme was known as the IEA Energy Conservation in Buildings and 

Community Systems Programme, ECBCS.) 

 

The high priority research themes in the EBC Strategic Plan 2019-2024 are based on research drivers, national programmes within the 

EBC participating countries, the Future Buildings Forum (FBF) Think Tank Workshop held in Singapore in October 2017 and a Strategy 

Planning Workshop held at the EBC Executive Committee Meeting in November 2017. The research themes represent a collective input 

of the Executive Committee members and Operating Agents to exploit technological and other opportunities to save energy in the 

buildings sector, and to remove technical obstacles to market penetration of new energy technologies, systems and processes. Future 

EBC collaborative research and innovation work should have its focus on these themes. 

At the Strategy Planning Workshop in 2017, some 40 research themes were developed. From those 40 themes, 10 themes of special 

high priority have been extracted, considering a score given to each theme at the workshop. The 10 high priority themes can be 

separated in two types namely 'Objectives' and 'Means'. These two groups are distinguished for a better understanding of the different 

themes.  

 

Objectives - The strategic objectives of the EBC TCP are as follows: 

• reinforcing the technical and economic basis for refurbishment of existing buildings, including financing, engagement of stakeholders 

and promotion of co-benefits; 

• improvement of planning, construction and management processes to reduce the performance gap between design stage 

assessments and real-world operation; 

• the creation of 'low tech', robust and affordable technologies; 

• the further development of energy-efficient cooling in hot and humid, or dry climates, avoiding mechanical cooling if possible; 

• the creation of holistic solution sets for district-level systems, considering energy grids, overall performance, business models, 

engagement of stakeholders, and transport energy system implications. 

 

Means - The strategic objectives of the EBC TCP will be achieved by the means listed below: 

• the creation of tools for supporting design and construction through to operations and maintenance, including building energy 

standards and life cycle analysis (LCA); 

• benefitting from 'living labs' to provide experience of and overcome barriers to adoption of energy efficiency measures; 

• improving smart control of building services technical installations, including occupant and operator interfaces; 

• addressing data issues in buildings, including non-intrusive and secure data collection; 

• the development of building information modelling (BIM) as a game changer, from design and construction through to operations 

and maintenance. 

 

The themes in both groups can be the subject for new Annexes, but what distinguishes them is that the 'objectives' themes are final 

goals or solutions (or part of) for an energy efficient built environment, while the 'means' themes are instruments or enablers to reach 

such a goal. These themes are explained in more detail in the EBC Strategic Plan 2019-2024. 

The Executive Committee 

Overall control of the IEA EBC Programme is maintained by an Executive Committee, which not only monitors existing projects, but also 

identifies new strategic areas in which collaborative efforts may be beneficial. As the Programme is based on a contract with the IEA, 
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the projects are legally established as Annexes to the IEA EBC Implementing Agreement. At the present time, the following projects 

have been initiated by the IEA EBC Executive Committee, with completed projects identified by (*) and joint projects with the IEA Solar 

Heating and Cooling Technology Collaboration Programme by (☼): 

 

Annex 1: Load Energy Determination of Buildings (*) 

Annex 2: Ekistics and Advanced Community Energy Systems (*) 

Annex 3: Energy Conservation in Residential Buildings (*) 

Annex 4: Glasgow Commercial Building Monitoring (*) 

Annex 5: Air Infiltration and Ventilation Centre  

Annex 6: Energy Systems and Design of Communities (*) 

Annex 7: Local Government Energy Planning (*) 

Annex 8: Inhabitants Behaviour with Regard to Ventilation (*) 

Annex 9: Minimum Ventilation Rates (*) 

Annex 10: Building HVAC System Simulation (*) 

Annex 11: Energy Auditing (*) 

Annex 12: Windows and Fenestration (*) 

Annex 13: Energy Management in Hospitals (*) 

Annex 14: Condensation and Energy (*) 

Annex 15: Energy Efficiency in Schools (*) 

Annex 16: BEMS 1- User Interfaces and System Integration (*) 

Annex 17: BEMS 2- Evaluation and Emulation Techniques (*) 

Annex 18: Demand Controlled Ventilation Systems (*) 

Annex 19: Low Slope Roof Systems (*) 

Annex 20: Air Flow Patterns within Buildings (*) 

Annex 21: Thermal Modelling (*) 

Annex 22: Energy Efficient Communities (*) 

Annex 23: Multi Zone Air Flow Modelling (COMIS) (*) 

Annex 24: Heat, Air and Moisture Transfer in Envelopes (*) 

Annex 25: Real time HVAC Simulation (*) 

Annex 26: Energy Efficient Ventilation of Large Enclosures (*) 

Annex 27: Evaluation and Demonstration of Domestic Ventilation Systems (*) 

Annex 28: Low Energy Cooling Systems (*) 

Annex 29: ☼ Daylight in Buildings (*)  

Annex 30: Bringing Simulation to Application (*) 

Annex 31: Energy-Related Environmental Impact of Buildings (*) 

Annex 32: Integral Building Envelope Performance Assessment (*) 

Annex 33: Advanced Local Energy Planning (*) 

Annex 34: Computer-Aided Evaluation of HVAC System Performance (*) 

Annex 35: Design of Energy Efficient Hybrid Ventilation (HYBVENT) (*) 

Annex 36: Retrofitting of Educational Buildings (*) 

Annex 37: Low Exergy Systems for Heating and Cooling of Buildings (LowEx) (*) 

Annex 38: ☼ Solar Sustainable Housing (*)  

Annex 39: High Performance Insulation Systems (*) 

Annex 40: Building Commissioning to Improve Energy Performance (*) 

Annex 41: Whole Building Heat, Air and Moisture Response (MOIST-ENG) (*) 

Annex 42: The Simulation of Building-Integrated Fuel Cell and Other Cogeneration Systems (FC+COGEN-SIM) (*) 

Annex 43: ☼ Testing and Validation of Building Energy Simulation Tools (*) 

Annex 44: Integrating Environmentally Responsive Elements in Buildings (*) 

Annex 45: Energy Efficient Electric Lighting for Buildings (*) 

Annex 46: Holistic Assessment Tool-kit on Energy Efficient Retrofit Measures for Government Buildings (EnERGo) (*) 

Annex 47: Cost-Effective Commissioning for Existing and Low Energy Buildings (*) 

Annex 48: Heat Pumping and Reversible Air Conditioning (*) 

Annex 49: Low Exergy Systems for High Performance Buildings and Communities (*) 

Annex 50: Prefabricated Systems for Low Energy Renovation of Residential Buildings (*) 

Annex 51: Energy Efficient Communities (*) 

Annex 52: ☼ Towards Net Zero Energy Solar Buildings (*)  

Annex 53: Total Energy Use in Buildings: Analysis and Evaluation Methods (*) 

Annex 54: Integration of Micro-Generation and Related Energy Technologies in Buildings (*) 

Annex 55: Reliability of Energy Efficient Building Retrofitting - Probability Assessment of Performance and Cost (RAP-RETRO) (*) 

Annex 56: Cost Effective Energy and CO2 Emissions Optimization in Building Renovation (*) 
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Annex 57: Evaluation of Embodied Energy and CO2 Equivalent Emissions for Building Construction (*) 

Annex 58: Reliable Building Energy Performance Characterisation Based on Full Scale Dynamic Measurements (*) 

Annex 59: High Temperature Cooling and Low Temperature Heating in Buildings (*) 

Annex 60: New Generation Computational Tools for Building and Community Energy Systems (*) 

Annex 61: Business and Technical Concepts for Deep Energy Retrofit of Public Buildings (*) 

Annex 62: Ventilative Cooling (*) 

Annex 63: Implementation of Energy Strategies in Communities (*) 

Annex 64: LowEx Communities - Optimised Performance of Energy Supply Systems with Exergy Principles (*) 

Annex 65: Long-Term Performance of Super-Insulating Materials in Building Components and Systems (*) 

Annex 66: Definition and Simulation of Occupant Behavior in Buildings (*) 

Annex 67: Energy Flexible Buildings (*) 

Annex 68: Indoor Air Quality Design and Control in Low Energy Residential Buildings (*) 

Annex 69: Strategy and Practice of Adaptive Thermal Comfort in Low Energy Buildings 

Annex 70: Energy Epidemiology: Analysis of Real Building Energy Use at Scale 

Annex 71: Building Energy Performance Assessment Based on In-situ Measurements 

Annex 72: Assessing Life Cycle Related Environmental Impacts Caused by Buildings 

Annex 73: Towards Net Zero Energy Resilient Public Communities 

Annex 74: Competition and Living Lab Platform 

Annex 75: Cost-effective Building Renovation at District Level Combining Energy Efficiency and Renewables 

Annex 76: ☼ Deep Renovation of Historic Buildings Towards Lowest Possible Energy Demand and CO2 Emissions 

Annex 77: ☼ Integrated Solutions for Daylight and Electric Lighting  

Annex 78: Supplementing Ventilation with Gas-phase Air Cleaning, Implementation and Energy Implications 

Annex 79: Occupant-Centric Building Design and Operation 

Annex 80: Resilient Cooling 

Annex 81: Data-Driven Smart Buildings 

Annex 82: Energy Flexible Buildings Towards Resilient Low Carbon Energy Systems 

Annex 83: Positive Energy Districts 

Annex 84: Demand Management of Buildings in Thermal Networks 

Annex 85: Indirect Evaporative Cooling 

Annex 86: Energy Efficient Indoor Air Quality Management in Residential Buildings 

 

Working Group - Energy Efficiency in Educational Buildings (*) 

Working Group - Indicators of Energy Efficiency in Cold Climate Buildings (*) 

Working Group - Annex 36 Extension: The Energy Concept Adviser (*) 

Working Group - HVAC Energy Calculation Methodologies for Non-residential Buildings (*) 

Working Group - Cities and Communities 

Working Group - Building Energy Codes 
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Executive Summary 

The ongoing revolution in digital technologies and cyber-physical systems has the potential to reduce costs 

and overcome barriers to energy efficiency in building operation through dynamic control and operation of 

energy systems in buildings. These promising digital tools include: 

  

• Artificial intelligence and data analytics, enabling more comprehensive energy performance as-

sessment and predictive management of assets. 

• The Internet of Things (IoT), providing access to more diverse, low-cost data on the status and 

activity of equipment and people in buildings.  

• Sharing economy platforms, presenting new business models for connecting users and providers 

of energy-efficiency software services. 

 

The IEA Annex 81 Data-Driven Smart Buildings was created in 2020 under the auspices of both Mission 

Innovation and the International Energy Agency’s ‘Energy in Buildings and Communities’ TCP.  Annex 81 is 

an international collaborative effort aiming to coordinate activities to better leverage ever-increasing data 

availability to improve the performance of buildings in terms of energy efficiency, environmental footprint, 

electricity grid participation and thermal comfort.  

 

Annex 81 imagines a future world empowered by access to low-cost information-rich data from buildings, 

and where data-driven energy productivity solutions, such as model predictive control (MPC) and fault de-

tection and diagnosis (FDD), can be deployed, at a large scale, on real-time data-exchange platforms with 

high levels of interoperability. Annex 81 will support the development of innovative new software solutions 

by collating high-quality datasets, benchmarking solutions in standardised virtual test environments, and 

hosting AI competitions.  

 

This report, a deliverable of Annex 81, reviews the state-of-the-art related to Data-Driven Smart Buildings 

research and technologies. It explores issues relating to IT infrastructure and data management procedures 

necessary for streamlining the deployment of data-driven software solutions. It also examines recent devel-

opments in data-driven approaches for optimising building energy performance, including fault detection and 

diagnosis, advanced control strategies and the interaction between buildings and the electric grid. The report 

covers the following aspects of the utilisation of data in building operation:  

 

• What is a data-driven smart building? Chapter 1 discusses the features of data-driven smart build-

ings, the focus of Annex 81. Some desirable features attributed to smart buildings were identified by 

participants of the Annex, including “adaptability”, “flexibility”, and “forward-thinking”. Achieving the 

attributes of a “data-driven” smart building, requires considering the real-time interaction between 

software and data (exchanging between sensors and devices in the building). Data must be findable, 

accessible, interoperable and reusable (FAIR) to support automated discovery and analysis by ma-

chines. This suggests two-way communication through “data pipes” between authorised users of 

data, supported by a systematic approach to organising the data, consent to data utilisation, and 

cybersecurity. Advanced analytics can then deliver insights and decision support through awareness 

of historical performance and ability to forecast future performance. While not an essential feature, 

a smart building is typically cloud-connected. Chapter 1 concludes with an Annex81 definition of a 

smart building. 

• Data platforms and information management. Chapters 2 and 3 discuss a key challenge for “data-

driven” smart buildings: how to organise the building operation data to be easily retrievable, contain 

contextual information, and be securely stored for diverse applications. Chapter 2 focuses on “plat-

forms”, exploring the different levels of data storage quality and the data management features of a 

digital platform that make it useful for sharing and processing data. These features include 1) data 

governance, i.e., who can access data, how long it can be stored and so on, 2) metadata for easy 
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location of data on the platform 3) procedures for data cleaning and sorting, to improve data quality 

and provenance and 4) plans on how to use data. Open software tooling and data standards are 

recommended to enable third parties to utilise data on the platform.  

Chapter 3 addresses the formidable challenge of standardising the use and application of metadata 

(“data about data”). In buildings containing thousands of data points, deciphering cryptic variable 

names and understanding their contextual implication is one of the barriers to the mainstream adop-

tion of data-driven solutions. While some outstanding efforts in this direction have been made (Hay-

stack, Brick, ASHRAE 223P, etc.), it remains one of the challenges ahead. Finally, Chapter 3 dis-

cusses where and how meta-data can be sourced and ingested into data platforms, including from 

building automation systems (BAS), building information models (BIM) and inference from various 

data-mining techniques applied to the data-source. 

 

• Data-driven advanced controls. Chapters 4 and 5 address model-based predictive control and 

other data-driven control strategies, one of the areas in which data-driven solutions can be pro-

foundly transformative. Although research studies and demonstration projects consistently confirm 

the potential of data-driven advanced control, this approach is far from being a mainstream practice. 

Apart from the abovementioned challenges of keeping and accessing tabulated data, the gap be-

tween the leading edge of research and the control industry is partly explained by the challenge of 

creating appropriate control models (discussed in Chapter 4), which range from carefully constructed 

“white-box” models based on physical principles to the purely “black-box” based on large datasets 

of inputs, including a vast continuum of “grey-box” models. Grey-box models represent an “in-be-

tween” approach combining physical insight and data analytics. Chapter 5 scrutinises, in depth, the 

scientific and mathematical aspects of formulating optimal control problems using a data-driven 

model, incorporating forecast uncertainty as a consideration. Chapter 5 presents in detail a demon-

stration project showcasing the mathematical formulation and the real-life application of predictive 

control. Chapter 5 proposes a hierarchical approach for the control of smart grids based on the flex-

ibility function as a unifying minimum interoperability mechanism (MIM) that couples control strate-

gies at different levels. With this approach, stochasticity has a less significant impact in larger sys-

tems; but as the analysis focuses on smaller scales, uncertainty becomes more important. 

 

• Fault detection and diagnosis (FDD). Chapter 6 discusses this application, which is among the 

most mature of the data-driven technologies. The vast literature in this field includes applications for 

several types of HVAC equipment (the most common ones being air-handling units and chillers), a 

vast array of metrics to assess the performance of systems based on collected data, fault prognosis 

algorithms to predict the likely cause of an issue, diagnosis algorithms to identify potential causes, 

etc. The chapter concludes by discussing strategies to generalise FDD algorithms to make their 

adoption easier and more widely accepted. Such strategies include using “hybrid” approaches that 

extend the range of data from which a reliable conclusion can be extracted, incorporating the concept 

of “transfer learning”, a branch of machine learning whereby a model created for a given situation 

can be applied for a new (albeit similar) system. Just as in the case of predictive control, FDD will 

considerably benefit from the widespread adoption of the abovementioned metadata standards. 

 

• Building to grid interaction (B2G). One of the areas in which data-driven applications will have a 

significant impact is the improvement of the interaction between buildings and energy networks via 

increased data accessibility (energy metering, pricing signals, occupancy, weather) and an en-

hanced capacity to share this data. In future energy systems, buildings will not be considered in 

isolation but as part of a complex energy ecosystem in which electric energy is dynamically traded 

between a centralised source (the grid) and buildings. Commercial and residential buildings have 

traditionally worked as passive entities and consumers; instead, they can increasingly provide gen-

eration and storage capacity, gradually transitioning into “prosumers”. High-resolution data of ex-

ported-imported electric power can be used to accurately model this interaction and conceptualise 

business models to benefit both buildings and the grid. At the core of B2G is the concept of flexibility, 

i.e., the ability of the building to adjust its power demand on requests from the grid.  



 
 

 9/103 

Chapter 7 discusses the two main approaches for demand response: direct control and indirect (or 

incentive-based control). In direct control, the building demand is adjusted by directly altering the 

operation of the equipment while targeting an aggregated load within a set of requirements for func-

tionality and comfort. Direct control is often organized around a “flexibility market”, in which “negoti-

ation” occurs (market offer/bidding) between the energy suppliers and the buyers before the energy 

service is required. At a small scale, e.g. between individual commercial buildings, this can take place 

via peer-to-peer (P2P) energy trading. In indirect control, a “penalty” or a pricing signal is used to 

motivate the building operators (or the control system) to correct the building demand.  

An interesting example of a data-driven B2G framework is the Smart Energy Operating System 

(SEOS) in Denmark, combining direct and indirect control features depending on the scale. The 

SEOS relies on minimum interoperability mechanisms (MIMs), i.e. the minimum information blocks 

that enable the interaction between systems. 

Chapter 7 also presents a set of demonstration projects and real-life B2G applications. While the 

technology is relatively mature for deployment, its widespread implementation confronts a set of hur-

dles: regulatory barriers (e.g., inadequate legislation framework), technological challenges (e.g., the 

cost of deploying metering and communication equipment, inadequate “legacy” building automation 

systems, lack of standardisation in communication protocols). Finally, appropriate economic barriers 

remain an issue, as the benefits that deploying B2G technologies will bring to energy service com-

panies, aggregators and homeowners are relatively unclear. 

 

• Collection of case studies. Annex 81 has engaged in gathering information from case studies of 

data-driven smart buildings worldwide. A thorough survey is used to obtain contextual information 

about the projects (type of building, climate, location), the business models in place for a data-driven 

control approach, the stakeholders involved, etc. The compilation of the case studies has provided 

interesting lessons. For example, there tends to be a limited effort in documenting metadata, a fact 

which limits the datasets’ applicability. Issues related to the accuracy of the data present challenges 

for creating accurate simulation models. However, collected data provided evidence of the impact of 

changes in control strategies. For instance, the adjustment of ventilation rates in response to the 

Covid-19 pandemic had a measurable impact on energy use patterns.  

The lack of documentation at all stages of a project is another fact that limits the serviceability of the 

data. More information is needed about the early design stages, how the original plans were later 

revised (“as built”), and the changes that took place during the commissioning process.  

The impact on occupant comfort was a significant factor. Occupants are often reluctant to accept a 

fully automated system that prevents overriding its settings. Nevertheless, occupants can accept 

setpoint variations for energy management if their impact on thermal comfort is not noticed. While 

predictive control strategies have provided only marginal comfort improvements, they do achieve the 

objective of energy savings.  

There is also room for improvement in the legal framework related to data-driven technologies. For 

example, regulations are required regarding the results of simulations and their impact on the de-

scription of how the building operates, criteria for the definition of energy-saving targets and privacy 

issues related to collecting data from the occupants to enhance building operation. 

Finally, as Chapter 8 concludes, scaling the adoption of data-driven smart buildings requires articu-

lated value propositions, information on best practices and technical pathways to achieve real-world 

implementations, engagement from the occupants and building operators, and additional training in 

an often-conservative industry. Finally, privacy and cybersecurity must be addressed to increase 

confidence in data-driven technologies. 
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Abbreviations 

Abbreviations Meaning 

AHU Air handling unit 

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers 

API Application programming interface 

AUC Area under the curve 

AI Artificial intelligence 

ANN Artificial neural network 

AE Autoencoders 

ARMA Autogressive moving average model 

AR Autoregressive model 

ARX Autoregressive model with exogenous input 

ARMAX Autoregressive moving average with exogenous input model 

BN Bayesian network 

BACnet Building automation and control networks 

BAS Building automation system 

BIM Building information model 

BMS Building management system 

BOPTEST Building operations testing (software tool) 

BPS Building performance simulation 

B2G Building to grid 

CSIRO Commonwealth Scientific and Industrial Research Organisation (Australia) 

CNN Convolutional neural network 

CD  Correct diagnosis 

CDR Correct diagnosis rate 

CYDRES Cyber Defense and Resilient System 

DB Database 

DT Decision trees 

DR Demand response 

DSO Distribution system operator 

DH, DHN District heating network 

EMPC Economic model predictive control 

EV Electric vehicles 

EBC Energy in Buildings and Communities Program 

ESCO Energy service company 

FN False negative 

FNR False negative rate 

FP False positive 
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FCU Fan coil units 

FDD Fault detection and diagnosis 

FAIR Findable, Accessible, Interoperable, Reusable 

FF Flexibility function 

FMU Functional Mock-Up interface 

GDPR General data protection regulation 

GAN Generative adversarial network 

GB Gradient boosting model 

GHG Greenhouse gas  

GEB Grid-interactive efficient buildings 

HP Heat pump 

HVAC Heating, ventilation and air conditioning 

HEMS Home energy management system 

HMIS Home management information system 

HTTP Hypertext transfer protocol 

IAQ Indoor air quality 

IEQ Indoor environment quality 

IFC Industry Foundation Classes 

IGFF Information greedy feature filter 

IEA International Energy Agency 

IoT Internet of Things 

KPI Key performance indicator 

LBNL Lawrence Berkeley National Laboratory 

LIME Local interpretable model-agnostic explanations 

MIM Minimum interoperability mechanisms 

MD Misdiagnosis 

MDR Misdiagnosis rate 

MPC Model predictive control 

NREL National Renewable Energy Laboratory 

NN Neural network 

NDR No detection rate 

NDgR No diagnosis rate 

OPC-UA Open platform communication-Unified architecture 

P2P Peer to peer 

PV Photovoltaic 

PCA Principal component analysis 

RF Random forest 

ROC Receiver operator characteristic 

RNN Recurrent neural networks 

RL Reinforcement learning 

RESTful Representational state transfer  
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RISE Research Institutes of Sweden 

RC Resistive-capacitive networks 

RDF Resource description framework 

RBM Restricted Boltzmann machines 

RTU Roof top unit 

SSN-SOSA Semantic sensor network-Sensor, observation, sample and actuator 

SAREF Smart applications reference ontology 

SE-OS Smart energy operating system 

SDE Stochastic differential equations 

SQL Structured query language 

SVM Support vector machine 

SVR Support vector regression 

SOP Symptom occurrence probability 

TRL Technology readiness level 

TES Thermal energy storage 

TSO Transmission system operator 

TN True negative 

TNR True negative rate 

TP True positive 

TPR True positive rate 

URI Uniform resource identifier 

URL Uniform resource locator ("address") 
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VAV Variable air volume 

VRF Variable refrigerant flow 

VBIS Virtual building information system 
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1 Introduction  

• Smart Building Features 

• Definition of Smart Building 

• The role of IEA Annex 81 

 

1.1. IEA EBC Annex 81 

The IEA EBC Annex 81: Data-Driven Smart Buildings was created in 2020 under the auspices of the Mission 

Innovation Initiative. Annex 81 is an international framework to coordinate efforts to better leverage the ever-

increasing data availability to improve the performance of buildings in terms of energy efficiency, environ-

mental footprint and thermal comfort. 

1.2 What is a Smart Building? 

“Smart Buildings” is a frequently used but poorly defined term. So, how can we define it? In the following 

pages, we will discuss some of the definitions presented by different research teams and organizations, as 

well as some of the critical features that underscore the “smartness” of a building. We will focus specifically 

on the requirements of a data-driven smart building, a specific subset of smart buildings in which data utili-

zation is at its core. 

1.2.1. Earlier Definitions 

 

Many definitions are provided for a Smart Building in the literature.  Some examples are provided below.  

While not comprehensive, or necessarily authoritative, they highlight some interesting perspectives for dis-

cussion purposes. 

 

Sinopoli (2010) proposes a definition based on the availability of technologies in the building: "a smart 

building involves the installation and use of advanced and integrated building technology systems. These 

systems include building automation, life safety, telecommunications, user systems, and facility management 

systems. Smart buildings recognize and reflect the technological advancements and convergence of building 

systems, the common elements of the systems and the additional functionality that integrated systems pro-

vide. Smart buildings provide actionable information about a building or space within a building to allow the 

building owner or occupant to manage the building or space. Smart buildings provide the most cost-effective 

approach to the design and the deployment of building technology systems." 

 

Zhou and Yang (2018) propose a definition that underscores the interaction between systems and data 

gathering from equipment. They refer to a Smart Building as a “type of building with reasonable investment, 

efficient energy management, and comfortable and convenient environment, designed by considering the 

optimized relationship among structure, system, service, and management […] it has intelligent control sys-

tems and smart and interconnected devices beyond the traditional building structure and function’ and that 

IoT ‘is one of the major technologies of smart buildings … supported by web-enabled hardware, automation 

devices, and sensor networks.” Zhou and Yang suggest that “hybrid electrical energy storage (HEES) 
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systems will be widely used in smart buildings that are equipped with some renewable sources of power 

generation such as solar panels mounted on the rooftop”, and “smart buildings also provide a better air 

ventilation system to improve the environmental quality [where] the temperature, humidity, and ventilation 

rates are controlled by the intelligent devices.” 

1.2.2. Attributes and Functionalities 

 

Figure 1-1, created by the Buildings Performance Institute Europe, depicts a “smart built environment”. 

 

 

Figure 1-1. Characteristics of a Smart Building. Source: Buildings Performance Institute Europe (BPIE), DeGroote et al. 
(2017)  

These features combine aspects of “Industry 4.0 style” advanced automation with a range of other consider-

ations, such as:  

 

(i) improved design and hardware selection 

(ii) superior performance through integrated/systems thinking and  

(iii) cost-effectiveness.  

 

This diversity of thought is also reflected in the variety of certification schemes aiming to identify those build-

ings which can be considered ‘smart’ (see subsection below).  

 

Annex 81 conducted an online Mentimeter survey where participants were asked to suggest the key attrib-

utes of a smart building. The results are illustrated in Figure 1-2. This word cloud hints at a vision of a smart 

building as one that has understated automation, working in the background, to anticipate and responsively 

(i) service the needs of occupants and (ii) optimise the operation of equipment parts as an integrated system. 

This outcomes-based vision aligns well with the concepts of ‘digitalisation’ and Industry 4.0. 
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Figure 1-2. Attributes that characterise a Smart Building. Source: IEA EBC Annex 81 Mentimeter Survey. 

Working in small groups of five to six persons, IEA Annex 81 participants further explored the technology 

features that underpin a Smart Building. The discussions identified key Smart Building technology attributes 

and functionalities, being: 

 

1. Building-services hardware and software interact in near real-time to deliver value.  This requires 

two-way data communication between sensors, devices, and servers. It further anticipates that the result 

of applying ‘smart’ analytics will lead to automated machine-to-machine dispatch of requests for action 

(e.g., adjustments to control settings) to deliver a value-adding result (rather than just providing infor-

mation for subsequent ad-hoc human consideration). Furthermore, the central processor is assumed to 

be continuously learning from the streaming of sensor data and from ad-hoc human intervention, giving 

it predictive capability for the relevant objective functions of interest (e.g., energy minimisation, equip-

ment performance, etc.). 

 

2. Building infrastructure has “data-pipes”, and related processes and tools to ensure data quality.  

It is understood that ‘garbage in leads to garbage out’. Consequently, there is a strong emphasis on the 

need for technical functionality that can deliver high-quality data. Data quality relates not just to data 

cleaning and gap filling but to a range of other factors, including: 

 

a) Labelling and context 

• Data richness: A simple unlabelled data stream is generally of limited value. Additional infor-

mation (metadata) on the source of the data, the physical meaning of the data, the units of meas-

ure, how the source of the data relates to other objects in its ecosystem, etc. —all add context 

that can be used to infer causation of events and achieve desired outcomes. By way of example, 

address-matching is often a means for linking records, utilising analytics to discover new correla-

tions, and enabling administrative processes. In many Industry 4.0 use cases, time stamping is 

also required to ensure that diverse data sets can be validly compared.   

• Ground truth: Machine learning algorithms will often ‘train’ using ‘ground-truth’ data where the 

target event or condition is known to occur. After training, the algorithm is then able to detect the 



 
 

 19/103 

event/condition from other confounding factors. In this way, access to ground truth meta-data can 

greatly improve the value of data.   

• Provenance: The validity of data can be compromised in a range of ways. For example, sensors 

can go offline due to connectivity issues, they can fail to update (leading to a static signal), tech-

nicians can alter some hardware or software configuration (and possibly fail to log changes), etc. 

A secure digital identity is required for assets to enable them to be coordinated. Some form of 

data health, traceability and data provenance tools could help ensure that decisions are made 

based on correctly identified and operational information.     

 

b. Structure and discoverability  

Rich data sources, which incorporate relevant metadata (as above), can be stored in a suitably struc-

tured database. Such a database can then be queried by machines based on logical relationships. 

Cloud-hosted Industry 4.0 processes (software applications) can then discover and orchestrate the op-

eration of devices. The extent to which database structures can be aligned with industry-wide open data 

schemas will influence the efficacy of industry collaboration. Web Ontology Language (OWL) data sche-

mas further support seamless integration with diverse cloud-based data sources, supporting the poten-

tial for innovative Industry 4.0 use-case applications and “PropTech” (entrepreneurial IT-based property 

technology products) business opportunities. While not directly developed for Industry 4.0, the so-called 

FAIR (Findable, Accessible, Interoperable, Reusable) data principles (Wilkinson et al., 2016) can help 

inform data management approaches for streamlining data exchange and avoiding expensive bespoke 

solutions.   

   

c. Consent, privacy and cyber-security 

Just because data is available does not mean it can be ethically used. It is essential to note that relevant 

Industry 4.0 use-cases may involve interaction with occupants and perhaps an inadvertent collection of 

personal data of the occupants. While data ethics and data security issues are discussed separately, it 

is noted here that a Smart Buildings IoT platform should provide technical functionality to overcome 

many of these concerns (including streamlined consent processes). 

1.3 Data-Driven Smart Building Definition 

In the light of the preceding discussion, we participants of Annex 81 have proposed the following definition:  

 

Data-Driven Smart Building: A Data-Driven Smart Building is a building that 

uses digitalization technologies to dynamically optimize site energy use, in-

door environment quality (IEQ) and occupant experience. 

Ideally, it is sufficiently connected and integrated with external markets and 

processes, that it can adaptively respond to changing conditions (e.g. pro-

vide flexible demand services to electricity markets). Ideally, it is sufficiently 

aware of future impacts, such that it can select an informed course of action 

for achieving higher-level objectives (reminiscent of human intelligence). 

To achieve this vision, a Data-Driven Smart Building will utilise live and his-

torical data from relevant sensors, IoT equipment, mobile devices, and other 

data sources to provide situational awareness for informed decision-making. 

Realizing the desired physical optimization objectives, will often then require 

advanced automation, driven by supervisory-level analysis of input data.   
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Sourcing, managing, analysing and dispatching input/output data - from 

measurement through to equipment automation and control - can be stream-

lined with emerging digital technologies, protocols and methods. To this end, 

the functions and technical attributes that underpin the infrastructure of a 

Data-Driven Smart Building may include some combination of (a) continuous 

data quality validation and assurance; (b) open-standard communication 

protocols that provide interoperability between devices; (c) an open-stand-

ard data structure that facilitates storage and use, for different use-case ap-

plications and by different software vendors; (d) AI/machine-learning analyt-

ics that informs maintenance and/or control processes in the building; and 

(e) automated dispatch of commands to orchestrate equipment operation at 

supervisory level.  

Open standards (communication protocols, data schemas, interfaces etc) 

should be used, where possible, to avoid vendor lock-in and maximize in-

teroperability. 

While many digitalization functions can and will be performed onsite (at the 

‘edge’), new applications and business models can also take advantage of 

cloud-based data platforms.  Data platforms provide a Smart Building with 

means for exchanging data with a wider variety of sources and users (cloud-

hosted databases, IoT, mobile devices etc) and a means for utilizing power-

ful software tools and workforce skills available from the IT industry. 

 

This definition begins with high level principles of what a data-driven smart building is, its purpose, and the 

characteristics that identify a building as smart. It finishes with a more detailed discussion of digital technol-

ogies and concepts that combine to provide best practice smart building capability. In this way, it aims to 

provide the reader with a more explanatory definition expanding on that of Verbeke et al (2020). It is hoped 

that this definition will provide the reader with some extra concepts and language to begin a conversation 

about implementing data-driven smart building technology.   
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2. Open Data Platforms 

• Role of Data Platforms 

• Existing Data Platforms 

• Identify components related to environmental and energy infrastructure 

2.0 Role of Data Platforms 

The built environment field is plagued by information silos and a lack of standardization that affects the infor-

mation flow. Current practices for building automation and management that control heating, ventilation and 

air conditioning (HVAC), lighting, access control and security traditionally act as silos which are operated 

independently and are provided as proprietary systems by multiple vendors (McGibney et al., 2016) 

 
We know that equipment data from building automation systems and data from IoT (Internet of Thing) sen-

sors are increasingly being uploaded to the cloud. With this, there is an opportunity to drive modern data 

analytics and machine learning ‘Applications’, that can reduce energy consumption and enhance productivity. 

However, we also know that there are still challenges, as companies are still struggling to consolidate data 

from multiple disconnected systems and service providers. Also, when onboarding, building innovators often 

must invest significant effort in getting access to sites, creating custom interfaces to equipment, decoding 

point labels, etc., before they can add any value to the data through new analytics applications. Therefore, 

there is a need for both useful platforms and harmonization within the sector. 

 

We see that today’s existing closed and proprietary system limits the possibility and further development of 

innovative solutions for the management of buildings. This is because new system innovations in the form of 

data-driven services are difficult to implement alongside existing systems. Often it is necessary to make an 

intrusive impact on the existing system or let the existing system supplier upgrade the platform. With plat-

forms that are more open and open APIs, each property owner would be able to let different actors use the 

property’s data for innovative control without being hindered by the existing owner directives, Part of this 

movement is already happening today as the Internet of Things breaks through and places data flows and 

digital services as a parallel infrastructure – but this is currently happening at the cost of double measuring 

and control infrastructures in many buildings. This would be possible to prevent if a more open infrastructure 

would be used.  

2.0.1 Digital Building Automation 

 

In support of efforts towards achieving targets regarding the indoor environment, energy efficiency, CO2-

emissions, profitability, etc., we have a growing number of digital tools at our hands at different stages.   

 

The illustration below (Figure 2-1) shows different maturity levels with regards to digital building automation. 

At the most basic level, there might only be local control. Moving up the ladder, we have connected control 

and different levels of SCADA systems and beyond. 

 

• At the first level, local control, the property is managed primarily manually, and control is done 

locally. 

• At the second level, connected control, the field units are connected via a control system. 
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• At the third level, super-ordinate control, there is a SCADA system in place, which enables different 

systems to communicate with each other; this is where many commercial properties are today. How-

ever, even if there is a SCADA system, there is often still optimization left to be done. 

• We are now beginning to see a shift towards the fourth step, where we have advanced SCADA 

systems, i.e., advanced super-ordinate control systems, which have advanced functions in the 

user interface, and where machine learning and artificial intelligence are used to optimize the oper-

ation automatically.    

 

The movement up this ladder of maturity can be done either through proprietary systems or open systems 

or a combination of both. 

 

 

Figure 2-1. Levels of maturity in building automation.  
Source: Digital Fastighetsautomation, www.offentligafastigheter.se. 

2.0.2 Stages of Data Deployment 

 

Data needs to be organized in an efficient and sufficiently accessible manner. Tim Berners-Lee, the inventor 

of the World Wide Web and Linked Data initiator, has suggested a 5-star deployment scheme for Open Data 

(Figure 2-2). This structure is quite relevant for Annex81 and future projects on data-driven smart buildings. 

 

• At the first level, data is available on the Web (regardless of format, as long as it is under an open 

license). This means that everyone can access data and then save, download, modify, and share it 

with anyone. According to the Berners-Lee framework, to get one star, you must make your material 

available on the Web, in any format (e.g., a PDF). However, it must be under an open license; oth-

erwise, others cannot use it. 

• At the second level, data is available as structured data (like an Excel file instead of an image of 

a table). This allows for processing with some proprietary software to aggregate, visualize, manipu-

late and export the data to another structured format. 

• At the third level, data is available in a non-proprietary, open format. It is exactly as the second 

level, but without the need of proprietary software (e.g., CSV instead of Excel). 

• At the fourth level, things start to get interesting, as data is on the Web. Data is linked to a URI 

(Uniform Resource Identifier), which makes it possible to “locate” it. A URI consists of a URN (Uni-

form Resource Number, the “name” of the object) and an URL (Uniform Resource Locator, the 
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“address” of the object). This makes it possible to bookmark data, link from any place on the Web or 

locally, reuse parts of data or even reuse existing tools and libraries.  

• At the fifth level, data is linked with other data. By doing so, data becomes discoverable, increasing 

its value thanks to the network effect, as the value of data increases with the number of links con-

nected to it. Both the consumer and the publisher benefit from the increased connection.  

 

 

Figure 2-2. Data deployment schemes. Source: https://5stardata.info/en/. 

2.0.3 Handling the Data: Data Lake vs Data Swamp 

 

Once the data has become available and we want to use it to run our smart control strategies, we need 

efficient ways to handle all the data. The illustration below (Figure 2-3) summarizes the qualities of a “Data 

Swamp”, i.e., with broken or no metadata management versus a “Data Lake”, with metadata management 

in place. Naturally, a data lake (structured database) is preferable to a data swamp. A useful data sharing 

platform needs sufficient metadata, data governance and data cleaning. 

 

 

https://5stardata.info/en/
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Figure 2-3. Data swamp vs data lake. Metadata management. 

A data lake is a centralized repository (the lake itself, i.e., the water reservoir) that collects a great amount 

of both structured and unstructured data from different sources (the incoming flow), which can be later ana-

lyzed (the outcoming flow). Data is stored in its original format, from multiple sources, which can be as di-

verse as data from IoT devices, mobile applications, social media, email conversations, allowing for real-

time data collection. The idea is to store the data "as is", without applying a rigid structure to it but contain-

ing informative tags, thus saving time and resources. It is akin to gathering a lot of different (but clearly la-

belled) objects in an attic without knowing exactly what we will do with them as we get them. A data lake is 

cheaper than structured storage since data does not need to be in a particular format when we store it.  

 

The beauty of a data lake is that it allows different users to access their data of choice, the same way people 

will choose to do different activities at a lake. A business analyst, a data scientist or a data developer can 

access the lake with her choice of analytic tools and frameworks. This allows every user to pursue his par-

ticular goal without being bound to using a specific data analysis method or software. A data lake can be, in 

its own right, a “data sandbox” for discovery and exploration, where the user with the right idea and the right 

tools can derive useful insights and find the treasure at the bottom of the lake. A data lake must provide the 

following features: 1) data governance, i.e., who can access data, how long it can be stored and so on, 2) 

metadata for easy location of data within the lake 3) procedures for data cleaning and sorting, to improve 

data quality and provenance and 4) plans on how to use data.  

 

To run different types of analytics —from visualizations and dashboards up to big data processing, real-time 

analytics, and machine learning— defined mechanisms to catalogue and secure data in the lake must be in 

place so that data can be not only found but also trusted. Without regulating the “instreams and outstreams” 

and periodical dredging of the bottom, outdated and unnecessary data accumulates, and the lake turns into 

a swamp. 

 

A data swamp is not suitable for data analytics, mainly for two reasons: 1) a lack of metadata makes finding 

specific data very hard or impossible, 2) a lack of organization and governance, resulting in unreliable and 

useless data being dumped into the swamp. In short, it is almost impossible to generate useful insights when 

analysing the data from a swamp. 

 

While a data lake is cheaper and easier to use than a structured database, it is not completely unregulated: 

it must guarantee that data is always useful and relevant by using metadata and a set of rules and procedures 

for data access and storage. 
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2.1 Towards Open Data Platforms 

An important attribute of platforms for data-driven smart buildings is that they are open, meaning they are 

based on published and documented standards and protocols. Importantly, “open data platforms” do not 

need to be “open source”; as long as interactions with the platform do not depend upon proprietary, licensed, 

obscured or otherwise “closed” technologies and standards, the platform can be considered “open” because 

it allows for third-party clients and applications. Open platforms allow developers, users, and other platform 

consumers to interact with, download, and analyze data using the language or toolchain of their choice.  

 

Open platforms are important because they enable a collection of platforms and technologies to compete 

evenly in the same ecosystem without consumers of the platform paying the price of vendor lock-in or having 

to choose an ecosystem in which to invest. Open interfaces serve as the point of interoperation between 

platform providers and platform consumers. As long as the interface contract is fulfilled, platform developers 

can innovate their offerings to provide better qualities of service or advanced features. Consumers of the 

platform do not have to be concerned with the implementation details because of the abstraction offered by 

the open interface. Additionally, basing interfaces on open, publicly available, and documented standards 

means that consumers of the interface do not bear the risk of platform deprecation or backwards incompati-

bility. Once a critical mass is achieved in a software ecosystem, consumers can be more willing to consider 

the adoption of data-driven buildings, because there are multiple providers with mutually compatible software. 

 

At the time of writing, few open platforms and protocols have emerged for data-driven smart buildings. Most 

early adopters choose to expose the underlying databases directly to their applications. For building teleme-

try, this often means using standard SQL to interact with relational databases like TimescaleDB, or writing 

Flux queries to interact with a timeseries database like InfluxDB. Chapter 3 below describes the use of open 

metadata standards for describing buildings and their data; this metadata can often be accessed using the 

standard SPARQL query language (for RDF-based metadata). Platform providers like SkySpark and Data 

Clearing House create their own HTTP API for interacting with metadata and data together. 

2.2 Conclusion 

Data platforms serve up the data generated by underlying cyber-physical systems (such as those typified by 

the Internet of Things) to facilitate access by downstream applications. Due to the complexity of the underly-

ing cyber-physical systems, it is necessary to provide descriptive metadata which can be processed or que-

ried by consumers of the data platform. This metadata provides essential contextual information which per-

mits interpretation of the data. In the following chapter, we describe the essential properties and key charac-

teristics of managing metadata and data together for data-driven smart buildings. 

2.3 References 
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3. Data Information Management 

• Why data and metadata management are crucial to the operation of data-driven smart buildings 
at scale 

• Data and metadata models that have emerged to address these issues 

• Challenges in creating, curating and managing data and metadata for buildings 

• Future opportunities 

 

As the availability, heterogeneity and scale of data in buildings increases, so does the need to effectively 

manage that data to maximize its utility to stakeholders. Data management is the practice of ingesting, or-

ganizing, storing and accessing information. We expand the definition of data management for the building 

domain to include management of metadata — so-called “data about data” — which allows relevant data to 

be easily identified and extracted by data consumers. In this section, we provide an overview of the primary 

components of data and metadata management solutions comprising how to represent and organize data 

and metadata, how to produce and maintain data and metadata, how to store and access data and metadata, 

and finally, how to validate and process data and metadata. These techniques, technologies and solutions 

should be incorporated into data platforms such as those covered in Chapter 2. 

Managing data for buildings must grapple with several inherent properties of the domain. First and most 

importantly, building data is heterogeneous. Buildings are characterized by one-off, ad-hoc conglomerations 

of different technologies from different vendors, assembled over time. This means that the specific data 

available about a building will be unique to that building and makes it difficult to generalize any one manage-

ment solution across many buildings in a portfolio. To this end, we review recent work on metadata models 

for buildings which address these organizational challenges. 

Secondly, buildings are complex systems, but not all the complexity is required for all uses of building data. 

The cyber-physical systems inside buildings enact a variety of different processes whose implementations 

are specific to that system and building. It is important to determine the proper level of detail for modelling a 

building so that important details are preserved, and non-essential information can be ignored. 

Lastly, buildings experience constant churn. Buildings are not static entities; they are changed over time 

through retrofits, repairs and other means. If the data and metadata for a building are not kept abreast of this 

evolution, then data-driven use cases will operate on incomplete or incorrect information. 

To this end, we review state-of-the-art data integration techniques which facilitate the creation and mainte-

nance of data and metadata in buildings. 

3.0 Data and Metadata Models 

A model is a digital representation of a building that adopts a particular organization and structure to support 

certain modes of use. No model of data or metadata will be appropriate for all potential uses; rather, one 

must take into account the family of data-driven use cases when selecting or designing a data model. Some 

kinds of questions are easier or more efficient to answer with some models over others. A building will have 

many digital representations over its lifetime which are produced and maintained for different purposes (Fi-

erro et al., 2020). Building information models such as gbXL and IFC make it possible to exchange geometric 

information about the building during design and construction. Modelica and the Control Description Lan-

guage are representations which express simulations of the building and generic control sequences govern-

ing the building’s operation and thus facilitate the commissioning of a building. Each of these models falls in 
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the category of open standards and thus are permissively licensed, freely available, and supported by eco-

systems of commercial and open-source software solutions. 

However, these models are rarely used during the operational phase of a building; instead, building manage-

ment systems (BMS), building automation systems (BAS) and other operating systems for buildings leverage 

proprietary internal models which are rarely documented, lack consistent structure, and impede the extraction 

and use of the data they contain. 

This is a challenge for data-driven smart buildings because the BMS/BAS is often the primary location of 

critical building telemetry (Bhattacharya et al. 2015). For this reason, we will focus on data and metadata 

management for the operational phase of a building. 

In this section, we briefly outline the landscape of data and metadata models for smart buildings identify the 

mature and emerging approaches in the space along with commercial and open-source implementations. 

Finally, we identify the challenges in adopting state-of-the-art data and metadata models and what future 

opportunities are. 

 

3.1.1. Role of Data and Metadata in Data-Driven Smart Buildings 

 

We begin with a high-level picture of how data and metadata “move'' through a representative data-driven 

building (Figure 3-1). 

 

 

Figure 3-1. Metadata lifecycle. 

Operational telemetry (i.e., data) represents the live status of the building and primarily comes from BMS and 

BAS deployments and is communicated over protocols like BACnet and OPC-UA. Telemetry is the time 

series data produced by sensors, actuators, alarms and other I/O points that is used in machine learning 

models, intelligent controls, fault detection and diagnosis processes, dashboards and other data-oriented 

processes. This data is typically stored in a time series database. Time series databases are software sys-

tems optimized for the storage and retrieval of continuously-growing sequences of timestamped measure-

ments, statuses and observations. This data typically needs to be cleaned (to remove noisy or erroneous 

values) and aggregated so it can be consumed by downstream data processes. Time series databases also 

decouple consumers of data from the producers of data (e.g., sensors in a BMS), thus allowing software to 

remain agnostic to the particular protocols and formats used by a given building. 

 

Metadata is information that describes useful properties of data sources. This includes immediate properties 

such as engineering units and sample rate but also broader contextual information such as how data is 

produced (e.g., what kind of sensor is it?), where the data is produced (e.g., where is the data source lo-

cated?), and how the data relates to other parts of the building (e.g., how is this data used by the building?). 
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A metadata model defines a structure for this information; however, designing an effective metadata model 

is difficult. The only truly representative model of a building is one that is 1-1 with every physical aspect of 

the building and its environment, which is intractable. A common adage is “all models are wrong, but some 

are useful''; this suggests that a metadata model must choose how it wants to abstract, or simplify, the build-

ing. 

 

Effective data and metadata models are crucial for enabling data-driven smart buildings. Data must be orga-

nized so it can be accessed efficiently by a wide array of use cases whose implementations can remain 

agnostic of the actual data source. Metadata allows the software to reason dynamically about which data 

sources in a building are relevant for an application. Without metadata, data-driven use cases must be hard-

coded to the particular data sources available for each building, and a human operator must manually con-

figure the use case logic to the idiosyncrasies of each deployment site. This impedes the large-scale devel-

opment and deployment of data-driven use cases (Fierro, 2021; Bergmann et al., 2020). 

3.1.2. Commercial and Open-Source Landscape 

 

The bulk of recent innovations in data-management for buildings have focused on the metadata models for 

data-driven use cases. Most digital control systems for buildings --- including building management systems 

(BMS), building automation systems (BAS), and energy management systems (EMS) --- use flat, alphanu-

meric strings to describe data sources (Bhattacharya et al., 2015). Figure 3-2 depicts one way of organizing 

these metadata models according to what aspects of the building they model and what kind of inquiries they 

support on behalf of downstream applications. 

 

 

Figure 3-2. An overview of metadata representations and their respective features. 

 

Project Haystack1 is an open-source metadata effort to use a discrete dictionary of tags to annotate these 

data streams with consistent terminology. SkyFoundry2 contributes to the development of Project Haystack 

and offers a complete data platform providing ingestion, tagging and analysis of building data. Other com-

panies3, including Siemens and J2 Innovations, participate in the development of Project Haystack and 

have incorporated elements of it into their own products. 

 

Brick4 is an open-source metadata effort that uses existing semantic web technology to implement a con-

sistent and verifiable representation of a building as a graph. Five companies, including Johnson Controls 

and Schneider Electric, have joined the open industrial consortium formed around Brick5. Brick has also been 

incorporated into large-scale data-sharing platforms like CSIRO's Smart Building Data Clearing House6 and 

Mortar (Fierro et al., 2019). 

 
1 https://project-haystack.org/  
2 https://skyfoundry.com/  
3 https://project-haystack.org/about  
4 https://brickschema.org   
5 https://brickschema.org/consortium/.  
6 https://www.ihub.org.au/ihub-initiatives/smart-building-data-clearing-house  

https://project-haystack.org/
https://skyfoundry.com/
https://project-haystack.org/about
https://brickschema.org/
https://brickschema.org/consortium/%7d
https://www.ihub.org.au/ihub-initiatives/smart-building-data-clearing-house
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RealEstateCore7 is an open-source metadata effort also based on semantic web technology that focuses 

on asset and property management. Several companies and organizations have signed onto the RealEs-

tateCore Consortium, including Idun Real Estate Solutions, RISE and Willow Incorporated. The most notable 

adoption of RealEstateCore is by Microsoft, which uses the ontology as part of their Azure Digital Twin sys-

tem, also available through Willow Incorporated. 

 

Google Digital Buildings8 is another entry in the metadata space that focuses on structured representations 

of the data needed to support applications. It is being used internally at Google to support their building 

portfolio. Google Digital Buildings can be exported to a form compatible with the semantic Web, but relies on 

custom formats and tooling for most of its features.  

 

ASHRAE is developing a metadata standard entitled “Semantic Data Model for Analytics and Automation 

Applications in Buildings'', also referred to by its identifier 223P, which represents detailed, low-level infor-

mation about the composition and topology of buildings and their subsystems.  

 

A variety of other metadata ontologies related to buildings are available today which are open-source, freely 

available and permissively licensed; BOT (Rasmussen et al., 2017), SAREF (Poveda-Villalón and García-

Castro 2018), SSN/SOSA (Haller et al. 2019) are the most prominent of these. 

 

Other information management technologies have been developed for other stages of a building's lifecycle 

and other aspects of building operations and management. VBIS9, Omniclass, Uniclass, COBie all deal with 

asset management and provide means of classifying and organizing equipment. 

 

Most of the above metadata solutions deal in some way with the building telemetry that fuels intelligent, data-

driven use cases. A few of the solutions are co-designed with specific platform offerings that manage this 

data --- Project Haystack and the Azure Digital Twins offering of RealEstateCore --- but others (such as Brick) 

are designed to work flexibly with many different data management platforms. 

 

There are numerous data management solutions available in the open-source and commercial landscape 

that are sufficient for this task. These include timeseries databases such as InfluxDB10, TimescaleDB11, and 

OpenTSDB12. Direct integration between metadata ontologies and these platforms are largely works-in-pro-

gress or non-existent; however, such efforts are largely in reach of development teams. 

3.1.3. Barriers to Adoption and Challenges 

 

There are several interrelated factors which pose barriers to the adoption of data and metadata models that 

enable data-driven smart buildings. 

 

The first barrier is that data and metadata models designed for data-driven smart buildings are relatively 

nascent technologies. At this time, many digital control systems for buildings do not incorporate sophisticated 

metadata models for buildings due to limitations of the underlying communication protocol or an established 

focus on “expert systems” rather than data-driven processes (such as those described in Chapter 4). This 

situation is changing: modern software platforms for buildings (3.1.2) are beginning to incorporate modern 

data and metadata models into their solutions. 

 

 
7 https://www.realestatecore.io/  
8 https://github.com/google/digitalbuildings  
9 https://vbis.com.au/  
10 https://www.influxdata.com/  
11 https://www.timescale.com/  
12 http://opentsdb.net/  

https://www.realestatecore.io/
https://github.com/google/digitalbuildings
https://vbis.com.au/
https://www.influxdata.com/
https://www.timescale.com/
http://opentsdb.net/
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Another barrier to adoption is the wide choice of data and metadata models available today. There is no 

metadata model that is appropriate for all possible data-driven use cases, and many of the existing models 

exhibit trade-offs which are not always obvious. As a result, it is difficult for non-experts to enumerate, select 

and evaluate these models against each other. Potential adopters of standard data and metadata models 

may hesitate out of an understandable desire to avoid a poor investment. 

 

The third barrier is a lack of turnkey solutions for working with metadata. Data integration systems are re-

quired to create, curate and maintain the data and metadata models. Data is comparatively “easy” to manage: 

there is a relatively high degree of consensus in the industry around a set of communication protocols for 

communicating with the digital components in a building, so there is little need to innovate on or develop in-

house solutions to deal with data. These protocols include BACnet, OPC-UA and Modbus. Metadata models 

are more difficult to create, mostly due to the fact that they represent information that is not explicitly or 

consistently captured by existing building systems. We will explore the difficulties of metadata integration 

below. 

3.2. Data Integration 

A crucial component to leveraging data and metadata for enabling data-driven smart buildings is how the 

data and metadata are “brought in” to a software platform that makes them available to developers, users 

and other stakeholder data consumers. The heterogeneity of buildings is the biggest challenge here 

— the sheer diversity of buildings means it is difficult to create a “one size fits all” solution — but it is also the 

greatest opportunity.  

 

Data integration is the process by which the jumble of heterogeneous information for a building is lifted into 

a clean and standard form that is easily accessible by software. The process of data integration incorporates 

the cleaning of data and the extraction of structured information into a metadata representation such as the 

ontologies above. These metadata representations can then be accessed by applications in order to realize 

data-driven smart buildings. 

3.2.1. Current Challenges 

 

There is a broad array of data integration techniques available. Due to the heterogeneity of buildings, specif-

ically the diversity of their existing digital representations, there is no ''silver bullet'' technique that will work in 

all scenarios, nor is there a single turnkey solution or platform that will serve all buildings equally well. Famil-

iarity with the strengths and weaknesses of these techniques is required to adapt these techniques to the 

particular idiosyncrasies of each deployment site. 

 

First, we present a high-level classification of existing digital representations of buildings. Building Information 

Models (BIM) are representations of buildings broadly designed to exchange information during the architec-

ture, design and construction phases of a building. These models — informed by standards such as Green 

Building XML and Industry Foundation Classes or proprietary technologies such as Autodesk's Revit — cap-

ture the geometry of building components and the topology of internal systems such as HVAC, plumbing and 

electrical. The existence and quality of these models vary wildly as they are informed by regional practices 

and regulations as well as the expertise of the modelers. These models may also be out of date or hard to 

find; in some countries, it is rare for the BIM to be “handed off” to the owners or managers of the building 

after completion. Nonetheless, when available, BIMs are the most complete and structured representation of 

buildings. 
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Operational systems such as building automation systems (BAS), building management systems (BMS), 

energy management systems (EMS) and other networked building operating systems are another source of 

metadata. These systems operate by reading from and writing to hundreds or thousands of input/output 

“points” — including sensors, setpoints, alarms and direct commands — which serve as the cyber-physical 

interface between software and the equipment in the building. These points are usually labelled by the engi-

neers who configure the operational system to describe the point to the eventual users of the system. How-

ever, due to historical constraints on the capabilities of digital device controllers and incumbent network pro-

tocols, these labels are usually short, alphanumeric strings that contain limited information. Furthermore, 

there are no standards for the format of these labels or the abbreviations used within. This presents chal-

lenges for the extraction of useful metadata. 

3.2.2. State of the Art Techniques and Solutions 

 

There is a rich history of academic and commercial solutions to the data integration problem. For brevity, we 

focus on the techniques that have been developed specifically for integration of metadata in buildings. Many 

of these techniques borrow from or improve upon more general existing solutions. 

 

Direct translation and ETL (extract-transform-load) techniques operate by ingesting well-defined, machine-

readable information, extracting necessary details and relationships, and outputting metadata in the desired 

format. As explored in Lange et al. (2018), Fierro et al. (2020), Pauwels and Terkaj (2016), this works best 

when BIMs or asset management data is available. There is active work on producing translations between 

several of the ontology-based metadata representations explored above. Such translations are characterized 

by being highly automated and delivering reliable, unambiguous results. 

 

Inference-based techniques are more commonly used when the available digital metadata is messy or un-

structured, as typified by point labels. Academic work Bhattacharya et al. (2015), Koh et al. (2018) leverage 

human-in-the-loop techniques, which learn the topology and composition of building subsystems by asking 

human experts what information can be extracted from representative point labels and then generalizing that 

feedback to the rest of the building. Additionally, Waterworth et al. (2021) have explored using sophisticated 

language models to replace some of the required input from a human expert. These efforts are more effective 

the more information is contained within building point labels, which is a site-specific characteristic. Some-

times the relationships between equipment in a building can be uncovered by perturbing the building with 

unusual control inputs, as explored in Pritoni et al. (2015). Work has also explored inferring the presence of 

and relationships between equipment using historical telemetry Lin et al. (2019), and other research (Shi et 

al., 2019) shows how such data-driven techniques can complement those that work with point labels. 

 

Wrapper-Mediator is a third approach to data integration that focuses on accessing metadata contained in 

external representations without having to translate that metadata to the target schema. Instead, a “wrapper” 

process provides access to some external metadata source; the wrapper performs on-demand translation of 

the metadata in that source to a destination schema specified by the user of the service. This is a promising 

design for two reasons. First, not all metadata representations are appropriate for all kinds of metadata. For 

example, BIMs have more natural expressions of geometry and spatial relationships than graph-based 

metadata representations; it is more natural for a wrapper process to rephrase incoming semantic queries 

(“which room is next to room 410”) in terms of underlying BIM geometries, rather than exhaustively mining 

every possible geometric relationship from the BIM and replicating that in a graph representation. Second, 

wrapper-mediator solutions present a way for existing metadata representations to be made interoperable 

without having to rigorously maintain a translation document or process that captures all possible equivalen-

cies between two given representations. 
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3.3 Conclusion 

Proper management of data and metadata is critical to realizing data-driven smart buildings at scale. The 

solutions that dominate the existing building stock are ad-hoc and non-standard and thus require costly inte-

gration to extract value. This section has outlined open-source and commercial efforts which can provide 

access to the growing volume of data produced by buildings, store it efficiently for later analysis, and annotate 

it with descriptive semantic metadata. Semantic metadata captures the context of the telemetry used for 

data-driven use cases. Semantic metadata standards give structure to this information by providing standard 

concept definitions, validation rules, and families of rich relationships necessary for describing data in a con-

sistent and interpretable way. 
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4. Data-Driven Control Strategies 

• How can “big data” help in improving building operation 

• Data-driven modelling techniques for MPC 

• Challenges: data requirements for control applications 

• Model-free approaches 

• Future opportunities 

4.0 Why Data-Driven Control Strategies 

The ever-increasing availability of data from building automation systems and other sources, along with the 

computational power that enables storing and analysing this data, have opened numerous opportunities to 

enhance the operation of HVAC and other systems both inside and outside buildings. At a dizzying speed, 

new possibilities emerge to collect data that may be useful, from the interaction of occupants with lighting 

systems to the use of additional instrumentation in heating and cooling equipment. Information from hundreds 

or thousands of variables collected from diverse locations throughout the building make it possible to correct, 

learn and thus fine-tune the operation of buildings at many different levels and for many diverse applications. 

The adage of “you cannot manage what you cannot measure” remains true. Thankfully, the number of things 

that are measured in a building keeps increasing, and the potential to improve building operation is virtually 

limitless. 

 

For example, at the supervisory control level, data can be used to better understand how to adjust tempera-

ture setpoint profiles with the objective of reducing electric peak loads and reducing GHG emissions. At the 

local control level (within an office or a room) data collected from temperature sensors, occupancy sensors, 

supply air temperatures, etc. can help in selecting optimal values for the operation of air-handling units, 

radiators, baseboard heaters and radiant floors.  

 

A key element in the usefulness of data for control applications is the fact that it opens the door to the creation 

of a reliable building model or “digital twin”. A building model allows testing “what if" scenarios under different 

weather patterns, occupancy profiles and unexpected events. While it is possible to generate a model based 

on basic assumptions, a model resting on the solid foundation of measured data can provide building oper-

ators and managers with a priceless tool assisting in decision-making. 

 

This abundance of data remains largely unexploited in building controls. While in other domains of human 

activity, the value of data is clear, building engineering has been comparably slower to adopt data as a 

cornerstone of new developments. 

4.1 Model-Based Predictive Control 

Model-based controls, and more specifically model-based predictive controls (MPC) are at the core of the 

idea of leveraging data for improving models. MPC is a control methodology whereby a model of a system 

(in this case, a building or its mechanical plant) is used along with weather and occupancy forecasts to 

optimize the control actions with regards to an objective function (cost, GHG emissions, energy use, etc.) 

(Figure 4-1). The “control-oriented model” (the one used in optimization routines) of the system is created by 

data from the building automation system, historical weather and sometimes from detailed building simulation 
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tools. For a detailed overview of MPC in buildings, the reader is referred to the excellent review paper by 

Drgona et al. (2020). 

 

 

 

 

Figure 4-1. Concept of Model-Based Predictive Control. 

 

The most difficult step is the creation of the control-oriented model. Developing the building energy models 

has been called the “bottleneck of the whole procedure'' of MPC by Prívara et al. (2012). During a preliminary 

survey carried out in the context of Annex 81, the development of the model was mentioned as the main 

obstacle in the creation of an MPC strategy, often taking over 50% of the time required in the development 

of the project (Figure 4-2). In the end, the effectiveness of MPC reflects the accuracy of the predictions of 

the model employed. 

 

 

Figure 4-2. Percentage of time of a model-based predictive control project spent in model development. 

The following pages discussed some modelling approaches used in MPC for buildings. 
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4.2 Models for Controls 

4.3.1 Grey-Box Approaches 

 

Grey-box modelling is very popular for MPC and control-oriented modelling in general. Today, grey-box mod-

els are also called data-driven digital twins. The grey-box framework bridges the gap between models based 

on first principles (white-box models) and models based solely on data (black-box models) as indicated in 

Figure 4-3. 

 

 

Figure 4-3. Grey-box modelling bridges the gap between white and black-box modelling. 

 

For the typical applications related to control-oriented modelling for buildings the grey-box model is formu-

lated as a lumped-parameter model, and in the linear case this model is often described using RC networks. 

See for instance Bacher and Madsen (2011) on a methodology for the identification of RC network-formulated 

grey-box models for buildings.  

 

Grey-box models are typically formulated as a state space model where the dynamics of the states is de-

scribed in continuous time by a set of stochastic differential equations (SDEs, system equations). 

 

The discrete-time observations are related to the states by a set of static equations (observation equations). 

Hence, a grey-box is formulated as continuous-discrete time stochastic state-space model in the form: 

 
 
 

d𝑥(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑑(𝑡), 𝑡)dt⏟              
Drift

+ 𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑑(𝑡), 𝑡)d𝜔(𝑡)⏟                
Diffusion

 

 

(4.1) 

 

𝑦𝑘 = ℎ(𝑥(𝑡𝑘)) + 𝑣𝑘  ,   𝑣𝑘 ∼ 𝑁(0, 𝑅𝑣) 
 

(4.2) 

 

Where x is the system vector, ω is a standard Wiener process (also often called a Brownian motion), and f 

and g are the drift and diffusion function, respectively, h is the observation function and vk is the observation 

noise. The drift function is the deterministic part of the SDE, whereas the diffusion function describes all the 

uncertainties not properly described in the drift. 
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If the system in (4.1)-(4.2) is linear, the model is written:  

 
 

d𝑥(𝑡) = (𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐸𝑑(𝑡))d𝑡 + Σdω(𝑡) 
 

(4.3) 

 

𝑦𝑘 = 𝐶𝑥(𝑡𝑘) + 𝑣𝑘  ,   𝑣𝑘 ∼ 𝑁(0, 𝑅𝑣) 
 

(4.4) 

  

where A, B, E, C and Σ are matrices governing the state evolution, input, disturbance, observation and noise, 

respectively. 

 

Modelling physical systems using SDEs provides a natural method to represent the phenomenon as it 

evolves in continuous time. In contrast to discrete-time models, prior physical knowledge about the system 

can rather easily be included, and the estimated parameters do not depend on the sampling time. 

 

There are many reasons for introducing the system noise (the diffusion term): 

 

• Modelling approximations. For example, the dynamics, as described by the drift term, might ap-

proximate the true system. 

• Unrecognised and unmodeled inputs. Some variables which are not considered, such as wind 

speed, may affect the system. 

• Noise in measurements of input variables. In such cases, the measured input signals are regarded 

as the actual input to the system, and the deviation from the true input is described by the noise 

term. 

In the observation equation, a noise term is also introduced. The reason for this noise term is:  

• Noise in measurement of output variables. The sensors that measure the output signals are affected 

by noise and drift. 

It seems reasonable to assume that the system noise and the measurement noise are independent. 

A popular software package used for grey-box modelling is CTSM-R (Juhl et al., 2016a, Juhl et al., 2016). 

The mathematical and statistical methods used are described in Kristensen et al. (2004).  

The performance of certainty-equivalent controllers such as conventional MPC for smart energy systems 

depends critically on accurate disturbance forecasts. The use of grey-box modelling also offers methods for 

embedding advanced weather disturbance models in model predictive control (MPC) of energy consumption 

and climate management in buildings as described in Thilker et al. (2021). 

4.2.2 Linear Time Series Models 

 

In this section we will introduce the most frequently used linear time series models. We will describe how 

they can be obtained as simplifications of the linear and time-invariant grey-box model introduced in the 

previous section.  

 

We shall first introduce the state space model, and then illustrate how the Box-Jenkins transfer function 

model as well as the ARMAX model is obtained by eliminating the state vector. Finally, the impulse response 

and frequency response functions for linear time series will be introduced.  
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For more information on model identification, model evaluation as well as methods for parameter estimation 

we refer to (Madsen, 2007). 

 

4.2.2.1 State-Space Models 

 

From the abovementioned continuous-discrete time linear and time-invariant state-space model the dis-

crete time linear state space model is obtained 
 

𝑥𝑘+1 = Φ𝑥𝑘 + Γ𝑢𝑘 + 𝑣𝑘 
 

(4.5) 

 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 + 𝑒𝑘 
 

(4.6) 

With Φ = exp(Aτ), Γ = ∫ 𝑒𝑥𝑝(𝐴𝑠)𝐵
τ

0
𝑑𝑠, 𝑣𝑘 = ∫ exp(𝐴(𝑘 + 𝜏 − 𝑠)𝜎) 𝑑𝜔𝑠

𝑘+𝜏

𝑘
, where τ is the sampling 

time. 

 

Let us now briefly compare the model with the previously considered continuous time linear state space 

model. It can be noticed that due to the discrete time formulation of the dynamics we have: 

 

• Assumed equidistant data, and the possibility of using irregular sampling is lost. 

• The direct physical interpretation of the parameters is lost. 

• A much higher number of parameters may typically be needed, which implies lower efficiency and 

lower robustness. 

The discrete time linear stochastic state-space model is often used for control purposes. 

 

4.2.2.2 Transfer function models 

 

The equivalent transfer function model is readily obtained by eliminating the state vector, i.e. we obtain the 

Box-Jenkins transfer function model: 

 

𝑦(𝑧) = (𝐶(𝑧𝐼 − Φ)−1Γ + 𝐷)𝑢(𝑧) (4.7) 

 

+(𝐶(𝑧𝐼 − Φ)−1𝑣(𝑧) + 𝑒(𝑧)) 
 

(4.8) 

=
𝜔(𝑧−1)

𝜌(𝑧−1)
𝑢(𝑧) +

𝜃(𝑧−1)

𝜙(𝑧−1)
𝜖(𝑧) (4.9) 

 

For ρ(𝑧−1) = ϕ(𝑧−1) we obtain the well-known ARMAX model: 

 

𝜙(𝑧−1)𝑦𝑘 = 𝜔(𝑧
−1)𝑢𝑘 + 𝜃(𝑧

−1)𝜖𝑘 (4.10) 

 

where z is the z-transform variable. 

 

Notice that compared to the discrete-time state-space model we must conclude that: 

 

• The decomposition of the error into process error and measurement error is lost. 

• The state variable has disappeared. 

 

The ARMAX model is frequently used for control purposes, and for instance the Minimum-Variance Con-

troller is easily derived from ARMAX models; see e.g., (Madsen, 2007). 
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4.2.2.3 Impulse and Frequency Response Models 

 

Let us now introduce the non-parametric descriptions of linear time series relations in both time- and fre-

quency domain. A non-parametric time-domain linear model description is obtained by polynomial division, 

i.e. 

𝑦𝑘 =∑ℎ𝑖𝑢𝑘−𝑖

∞

𝑖=0

+ 𝑁𝑘 

 
(4.11) 

 

where Nk is a correlated error sequence. The sequence Nk is the impulse response (matrix) function.  

 

The frequency (or z) domain counterpart is: 

 

𝑦(𝑧) = 𝐻(𝑧)𝑢(𝑧) + 𝑁(𝑧) (4.12) 

 

where H(z) is the transfer function, and for 𝑧 = 𝑒𝑖ω we obtain the frequency response function (gain 

and phase). 

 

Compared to the previously considered transfer function model we must now conclude that: 

 

• The parametric description of the error is lost. 

• The non-parametric model hides the number of time constants (model order), etc. 

 

Impulse and frequency response functions are often used in analysing the properties of controllers.  

4.2.3 Black-box Approaches 

In recent years, black-box models based on machine learning methods have been employed to rapidly obtain 

a model for a particular building. This method offers accurate results provided that the measured data is 

sufficiently accurate. Some reviews in the topic of machine learning related to building energy modelling 

include the ones by (Afram et al., 2017) and Maddalena et al. (2020). Artificial intelligence black-box models 

have become a popular pathway among field practitioners. 

 

Black-box models represent a “mapping” of sorts between inputs and outputs established with a training 

dataset. Relying solely on the dataset to train a black-box model implies a potential challenge: the model 

accurately predicts the data it has already “seen” but lacks extrapolation ability. Black-box models can 

achieve a great deal of accuracy, even with non-linear phenomena. Although they may be obtained system-

atically, they cannot be easily exported directly from one building to another. Furthermore, black-box models 

are not ideal candidates to optimize the operation of buildings because they are usually trained on data from 

conventional, “business as usual” control strategies (Afram and Janabi-Sharifi, 2014). 

4.3 Challenges for MPC 

4.3.1 System identification of Appropriate Models 

System identification refers to the process of identifying the values of the parameters in a model based on 

the available data. Successful system identification using measured data encompasses the concepts of 

structural and data-dependent identifiability (a measure of the possibility of obtaining an accurate model from 

the available data). 
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• Structural identifiability relates the identifiability of a model to its structure, and it depends only on 

the model order and the parameter set (Agbi et al., 2012). A model with very few parameters and 

low order may lack the ability to accurately describe the physical phenomena that define the system. 

On the other hand, a model with too many parameters — or equivalently of too high an order — is 

an over-parameterized model. This parameter redundancy makes multiple combinations of param-

eter values to correspond to the same model output, therefore having multiple ”optimal” solutions of 

parameter sets. In building modelling, choosing the order and the structure of the model is not a 

straightforward task. More often than not, it requires professional experience and expertise and there 

is no solid proof that the resulting model is the best model possible for the system at hand with the 

available data (Li et al., 2021). The most common reason for identifiability problems is an over-pa-

rameterized model (Brastein et al. [2018], Li et al. [2021], Yi and Park [2021]). 

 

• Data-dependent identifiability relates the identifiability of a model to the data it is calibrated with and 

it only depends on the initial state of the system and its inputs (Agbi et al, 2012). It expresses that 

even if a model is structurally identifiable, the dataset used may be of poor quality and not contain 

enough thermal dynamics information for the model calibration. Ljung (1999) proposes to excite the 

system with a variety of inputs in an open-loop fashion in order to ensure that the dataset will contain 

enough information for the system identification. 

 

In practice, both the structural and data-dependent identifiability of a model are not a binary state, i.e., they 

extend over the whole range from identifiable to non-identifiable. 

 

A pressing need in the world of data-driven MPC in buildings is how to accelerate the uptake of this technol-

ogy. In other words: how to increase its scalability. As mentioned above, model creation is the main bottle-

neck of this technology. A concept that has been put forth is the idea of using control-oriented archetypes to 

accelerate the deployment of MPC (Candanedo et al., 2022). Control-oriented archetypes are simplified rep-

resentative models that contain features of a generic building type. While not identical to a building in partic-

ular, archetype models can be used in the development of policies with a general applicability. 

4.4 BOPTEST 

Needs for advanced and improved control strategies in building and district energy systems are growing due 

to requirements for reducing energy use, greenhouse gas emissions, and operating costs, providing flexibility 

to the electrical grid, as well as ensuring performance of novel hybrid and collective system architectures.  

Examples of such control strategies are advanced rule-based control, and the abovementioned Model Pre-

dictive Control (MPC) (Drgona et al., 2020), and Reinforcement Learning (Wang and Hong, 2020).  However, 

while these and other control strategies show promise, two challenges slow their widespread adoption: 

 

• The performance of each control strategy is typically demonstrated on individualized case studies 

and quantified using different performance indicators, making it difficult to properly benchmark and 

compare their performance, identify the most promising approaches, and identify needed further 

development.   

• Demonstrations in real buildings and district energy systems pose large operational risks and diffi-

cult environments for controlled experiments.   

 

The building simulation community can address these challenges by providing suites of publicly available, 

high-fidelity simulation models, called emulators, to be used for benchmarking control strategies.  Further-

more, providing a comprehensive framework to deploy, interact with, and generate key performance 
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indicators (KPI) from these emulators would ensure their benchmarking capability and make them readily 

available to related control and data science fields outside of the BPS community.  There exists precedent 

for such an approach within the building simulation field with the development of the BESTEST (Judkoff and 

Neymark, 1995) and subsequent ASHRAE Standard 140 (ASHRAE 2011) as well as the optimization fields 

(e.g. Decision Tree for Optimization Software (Mittelman 2022) and data science (e.g. OpenAI Gym, 2022). 

 

Work is underway on the envisioned framework and emulators, called the Building Optimization Testing 

Framework (BOPTEST), which is developed and available open-source at https://github.com/ibpsa/project1-

boptest.  The framework is described in detail in (Blum et al., 2021) and has been used in (Arroyo et al., 

2020, Arroyo et al., 2022, Bünning et al., 2021, Huang et al., 2018, Walnum et al., 2020, Yang et al., 2020, 

Zanetti et al., 2022). 

 

BOPTEST (Figure 4-4) consists of a run-time environment (RTE) deployed using Docker (Docker, 2023) that 

provides a rapidly accessible and repeatable environment to deploy building emulators, select test scenarios, 

manage control signals and measurement outputs, simulate the responses of the emulators to external con-

trol signals, receive boundary condition forecasts for predictive controllers, and calculate KPIs, all through a 

generally accessible RESTful HTTP API.   

 

High-fidelity, well-documented, building emulators, so called “test cases”, are implemented using Modelica 

(Mattson and Elmquist, 1997), especially using the Modelica Buildings (Wetter et al., 2014) and IDEAS (Joris-

sen et al., 2018) libraries, and compiled into Functional Mockup Units (FMU) (Blochwitz et al., 2011) for 

simulation within the RTE using the Pyfmi Python package (Andersson et al., 2016). The use of Modelica 

allows for modeling fluid pressure-flow networks and control logic explicitly, as well as the use of variable 

time-step solvers, which are critical for capturing dynamic system response to control signals in realistic 

ways.   

 

Test case models also contain embedded control such that test controllers can choose set points and actu-

ator signals to overwrite at the supervisory or local loop levels.  In addition to the dynamic model, test case 

FMUs also contain all necessary boundary conditions to simulate the model (such as weather and internal 

load schedules) as well as calculate relevant KPIs (such as electricity prices and carbon emission factors).  

Finally, the RTE calculates and reports a standard set of KPIs including energy use, energy cost, peak de-

mand, and thermal and air quality discomfort.  In addition to core framework and emulator development, 

additional development is making BOPTEST available as a web-service (https://github.com/NREL/boptest-

service), providing an OpenAI Gym interface (Arroyo et al., 2021), providing a BACnet interface and integrat-

ing semantic modeling (Fierro, 2022), and providing an online dashboard to share and sort results. 

 

https://github.com/ibpsa/project1-boptest
https://github.com/ibpsa/project1-boptest
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Figure 4-4. BOPTEST Concept. 

4.5 Reinforcement Learning 

Reinforcement learning is a machine learning concept whereby data from numerous scenarios can used to 

train a controller to select control actions that maximize a “reward” or apply a “punishment” under a given set 

of conditions. Reinforcement learning is quite effective as a means to select the best possible control actions. 

If sufficient data including a vast universe of diverse conditions are available, then the RL algorithm can be 

trained without a model. In this sense, RL is sometimes referred to as a “model-free'' method. If not enough 

data are available to train the RL algorithm, a simulation tool often called “AI gym”, intended to generate 

synthetic data under different a vast range of conditions, can be used. 

 

Vásquez-Canteli and Nagy (2019) reviewed studies using Reinforcement Learning for Demand Response 

until the year 2018 and found that most of them focus on single-agent systems and stationary environments. 

They emphasize the importance of non-stationary environments because of the presence of multiple con-

sumer agents (i.e., buildings) affecting the energy consumption of a grid during the peak hours. They identi-

fied testing in real systems (and not simulations) as one of the potential paths for future research, and spe-

cifically analyzing reliability, adaptability, scalability and learning speed. 
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5. Real-Time Implementation of Control 

and Forecasting 

• How are forecasting and control related? 

• Disturbance forecasting for building thermal control 

• Economic MPC versus linear quadratic MPC 

• Real life example: MPC of thermal conditions of a school building 

5.0 Relationship between Forecasting and Control 

For predictive control, it is central to have available forecasts of so-called disturbances that appear in the 

system. A disturbance is a non-stochastic, dynamical system input which is not controllable. The process 

generating the disturbances might be (and usually is) stochastic, but such errors are often disregarded or 

described by a white-noise process. A disturbance is thus a significant predictive input to the system that 

disturbs the dynamics. If such disturbances are disregarded in a predictive control setup, the control perfor-

mance is doomed to be sub-optimal (or even worse than status quo) since many underlying assumptions in 

the control and modelling framework becomes terribly wrong. 

 

Reference tracking is a common task in control applications (Bagterp Jørgensen et al. 2012) and is used in 

many layers of the energy grids to balance electricity loads, avoid voltage overload and congestion etc (Xie 

et al., 2020). It is thus a diverse and well-studied controller for many applications. In certain settings, it has 

attractive properties that ensure fast and robust optimisation performance, which is extremely important in 

real-time implementations. 

 

In the following, we explain/illustrate why forecasts in a certain form is key to obtain optimal performance. 

For a reference-tracking predictive controller, a popular objective is the following quadratic function: 

 

 

(5.1) 

In the above: 

 

• 𝑧𝑡(𝑢𝑡) is the system we wish to control with an input 𝑢(𝑡) 

• 𝑟𝑡  is the reference point at which we wish to stabilise the system.  

• ϕ is the objective function, which has the purpose of making control solutions comparable. 

• 
2

2( )t t tz u r−  is the quadratic distance between 𝑧𝑡 and 𝑟𝑡 

• T is the prediction horizon, that is how far into the future the controller considers.  is all the past 

history of the system, input, and disturbances. Therefore, in the above optimal control problem, it is 

assumed that all history till the current time instance is known --- which is usually a fair assumption. 

Writing out the objective function, the properties of the objective function appears: 

 

 

(5.2) 
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The objective function appears as a weight between the variation of the system and the deviation from the 

reference point. The solution requires us to estimate the conditional moments of the system, 𝐸[𝑧𝑡(𝑢𝑡)|𝒴𝓀] 

and 𝑉[𝑧𝑡(𝑢𝑡)|𝒴𝓀]. This implies that we need to forecast the conditional expectations of the disturbances of 

the system. This is a significant requirement and relates the solution to the optimal control problem to the 

forecasts that are needed to solve it. 

 

In the following, we review the current standards for dealing with disturbances in control applications of smart 

buildings, which often is not predictive. We also review the suggestions and proposals regarding predictive 

forecasting in control applications in the literature. 

5.1.1. Forecasting for Data-Driven Building Control 

 

In predictive control of buildings---in order to account for the future conditions in the HVAC operations plan-

ning---it is necessary to forecast the future weather conditions (Thilker et al., 2021c). In particular, solar 

radiation and the outdoor air temperature are important elements to know beforehand. The coming sections 

cast light on the current standards for forecasting these. 

5.1.2. Solar Radiation Forecasting 

 

Solar radiation is by far the most important disturbance for short-term purposes due to the large amounts of 

power it delivers in short time (Madsen and Holst, 1995; Chen, 2011). Hence the importance of accurately 

forecasting the solar radiation on a short-term. But global solar radiation is not a standard parameter to deliver 

by meteorological institutes -- the literature thus proposes various methods to do this. Physically, the amount 

of radiation that hits Earth's surface is given by Lambert Beer's law (Paltridge and Platt, 1977). 

 

𝐼𝐺 = 𝐼0 exp (∫μ(𝑥)d
l

𝑥) 

 

 (5.3) 

 

where 𝐼0 is the solar radiation emitted by the sun, μ is the attenuation of the rays, which is dependent on the 

atmospheric density. The latter, however, poses a difficulty since it is near impossible to estimate 𝜇 as a 

function of the atmospheric height. Instead, the term ∫ μ(𝑥)d
l

𝑥 is usually estimated based on the cloud cover 

(since it is the number one dependence). Models based on Eq. 5.3 exist in various forms due to its simplicity 

(Madsen, 1985, Dozier, 1980, Dai and Fang, 2014). 

 

The literature proposes various grey-box related models as well. AR and ARX models are popular modelling 

schemes for solar radiation estimation (Amaro e Silva and C. Brito, 2018, Boland, 2015, Bacher et al., 2009). 

These are simple models where the estimated parameters are relatively easy to interpret compared to more 

advanced methods. Bacher et al. (2009) formulates auto-regressive (AR) and AR with exogenous inputs 

(ARX) models for predicting short-term solar radiation. They also investigate the importance of meteorologi-

cal forecasts related to short-term forecasting. They find that the available solar observation is the most 

important input to the model compared to the meteorological forecasts. For long-term forecasting, however, 

meteorological forecasts become the most important input. 
 

Models based on ANNs or random forests are also becoming increasingly popular for forecasting disturb-

ances and modelling (Finck et al., 2019, Pang et al., 2020, Lago et al., 2018, Benali et al., 2019). A typical 

method is to use a feed-forward ANN using inputs such as the current time, cloud cover, and related climatic 

parameters (Finck et al., 2019). A popular method, is to use ARX-models based on neural networks (a special 

case of recurrent neural networks (Pang et al., 2020) for forecasting the solar radiation (Vaz et al., 2016, 

Ferracuti et al., 2017, Boussaada et al., 2018). These take the previous 𝑛 observations/states/inputs as input 
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and predicts the next output at time 𝑛 + 1. The performance compared to ARX- and grey box models seems 

to vary from application to application with no clear victor. A general downside of neural network approaches 

is the critical dependence on large data sets for training and sensitivity towards non-physical behaviour in 

regions where data is not present. 

5.1.3. Outdoor Air Temperature Forecasting 

 

For predicting the outdoor air temperature, meteorological forecasts (solving lots of coupled Navier-Stokes 

equations) perform well. For well-insulated buildings, the dynamics of the outdoor air temperature does not 

significantly influence the indoor air temperature. A building envelope can be thought of as low-pass filter, 

which filters out the high-frequency variations of the fluctuating outdoor air temperature (Nielsen and Madsen, 

2006). For this reason, the need for heating in well-insulated buildings based on the outdoor air temperature 

is mostly based on the low-pass filtered signal — which may be close to constant. Thus, if no sun is present, 

the heat required to keep a comfortable indoor temperature during the day is mostly constant. 

 

Many methods for forecasting the ambient air temperature have been used in the literature leaving the mod-

eller with many choices. Dynamical models — like ARMA models — are natural choices for modelling the 

outdoor air temperature due to their simplicity and easy usage (Murat et al., 2018). Other methods such as 

neural network models (Papantoniou and Kolokotsa [2016],), regression models, or gradient boosting meth-

ods (Ma et al., 2020) are also used for predicting the outdoor air temperature. 

5.1 Mean value-based predictive control 

By far, the most common type of MPC implemented in buildings is the ''simplest'' kind of MPC, which is based 

on the mean value. Often, the models are also formulated as linear models, which often makes the optimal 

control problem convex, and therefore fast and robust to solve. 

 

The most common objective function in implemented cases is to use the economic price of operating the 

building, also known as Economic MPC (EMPC). Often, to give the controller room and flexibility to optimise 

the operations, a certain allowed temperature interval is given: 

 

𝑇min ≤ 𝑇𝑘 ≤ 𝑇max 
 

 

This temperature span may vary in time, e.g. it is often widened during night, since occupants are either 

asleep in residential buildings or offices and schools are unoccupied. This allows the controllers to lower the 

temperature during night, or heat up, if the prices (being economic, CO2, etc.) are cheap. The following pages 

review multiple real-time economic MPC implementations. 

5.1.1 Economic MPC 

West et al. (2014) discuss MPC in large office building. They consider varying costs in the objective function, 

(it was however implemented as constant in the demonstration period). Objectives include comfort dissatis-

faction using the ASHRAE standards to evaluate satisfaction, greenhouse gas emissions from the heating 

system, and the economic costs of the heating system. Indoor comfort was evaluated via feedback from 

occupants; however there was no detailed evaluation of the measured temperatures. 

 

Huang et al. (2015) develop an MPC for control of the indoor air temperature of an airport terminal in Aus-

tralia. The MPC also utilises an artificial neural network to handle the uncertainties in the HVAC processes. 

For the thermal model of the air, they use an explicit Euler method with zero-order hold for the input. They 

do apply a Kalman filter method for updating the states. They both carry out a simulation and an experiment 
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to test the model and MPC, and find savings around 13 percent. They combine economic costs with a 1-

norm penalty on the reference tracking term. 

 

Finck et al. (2019) present and implement EMPC for a Dutch building. The models for the building heat 

dynamics and the weather forecasts are based on artificial neural networks - this has the disadvantage that 

it requires large amounts of data. They asked the occupants to follow a fixed schedule for being present and 

opening and closing windows. They tested the controller for flexibility optimisation and to regulate on-site 

power generation and grid-consumption and feed-in. The objective was purely economic while having con-

straints on the indoor air temperature. 

 

Liao and Dexter (2004) identify a single-zone model for a three story building, where they model the average 

room temperature of the entire building. All zones are equally big, so the weighted average is simply the 

algebraic average. Each floor is similar in terms of the heating equipment (i.e., easy to model).  

5.2 Linear quadratic predictive control 

Another popular control scheme is based on what is known as linear quadratic controllers (quadratic objec-

tive functions with linear models). The optimal control objective is typically on the form: 

 

 

(5.4) 

 

where 𝑥(𝑡) is the system state, 𝑟(𝑡) is a reference signal, 𝑢(𝑡) is the input (e.g., heat input), and 𝑔(𝑡) is an 

additional regularisation terms that might appear in the objective. This objective minimises the variance of 

the system around the reference point. It has useful trade-offs, which can be visualised in so-called Pareto 

fronts (Fig. 5.1). It illustrates the inherent trade-off from the objective function in Equation. 5.4: If we require 

a smaller variance of the input signal, it comes with the cost of increasing the variance of the controlled 

system. 

 

 

Figure 5-1. Pareto front of the variation of the input and the controlled system around the reference signal. 

De Coninck and Helsen (2016) present the results of implementing an MPC in a two-storey office building 

using a linear GB model. They employ a reference tracking, linear quadratic controller, tracking the optimal 

comfort level (according to ASHRAE standard), and combines it with a linear economic cost term. Using such 
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a setup still makes the optimal control problem convex. They report cost savings of between 30 and 40 

percent while, at the same time, reducing discomfort. They do room temperature averaging since it is not 

possible to identify a multi-zone model because the heat usage in each room is not known (only on building 

level). This is a very common issue for many buildings with water-based heating systems (Thilker et al., 

2021a). To model the individual rooms, more black-box related models are required such as simple time-

series models, e.g. ARX models, or complex neural network models. 

 

Široký et al. (2011) present an experiment with an implemented MPC in a five-floor building block on a uni-

versity campus. The room temperature was measured in two reference rooms in the building and parameters 

in a linear RC-model were estimated from data. An MPC was run for two weeks, and energy savings were 

achieved over a rule-based control; however the room temperatures are not evaluated in detail, and naturally, 

besides the reference rooms, there is no other information about temperatures in the other rooms. They also 

combine the quadratic objective function to track a temperature reference set-point and include the economic 

heating costs. 

 

Moroşan et al. (2010) present a simulation study demonstrating how different MPCs for multi-room temper-

ature control in a building perform. The focus is on the interaction between the rooms in the form of heat 

exchange due to temperature differences. The results indicate that either a centralized control, which has a 

full multi-room model, or a distributed control, where the room models exchange information, is preferable 

over a decentralized control, which does not take the interactions into account. They use a minimum variance 

reference tracking objective to minimise discomfort in the occupation periods. 

5.3 An In-Depth Example 

This section gives a practical example of an economic MPC implementation in a Danish school building, 

where the indoor air temperature is controlled to demonstrate flexibility. For more details of this example, 

please see Thilker et al., (2022b). 

 

Figure 5.2 shows a photo of the building. It was built in 1929 and thus not insulated according to modern 

standards. It has three floors and where the uppermost floor is a renovated attic. Heat is supplied by the local 

district heating network, which is used for space heating, air-handling-unit, and domestic hot water. 

 

 

Figure 5-2. The Danish school building in which an MPC was installed and controlled the indoor air temperature. 
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5.3.1 Brief Introduction to the Building and the Problem 

 

The building's space heating is a hydronic water-based heating system. The heat equipment in the rooms 

consists of radiators. The radiators are controlled by thermostatic valves that use a set-point to determine 

the pin-position and the water flow. Since the rooms are dimensioned differently in terms of size, number of 

radiators, the number of windows (and their orientation), it is a comprehensive task to compute the heat 

usage for individual rooms. To simplify the control task, the indoor air temperature in the building is repre-

sented by the average temperature of all measured temperatures in the rooms. Furthermore, the controller 

sends out the same set-point to all rooms. 

 

The thermal model of the building is based on stochastic differential equations, where observations are taken 

at discrete times kt  

 
 

d𝒙(𝑡) = 𝑓(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡))d𝑡 + 𝑔(𝒙(𝑡)) (5.5a) 

𝒚𝒌 = ℎ(𝒙(𝑡𝑘)) + 𝒗𝒌,  𝒗𝒌 ∼ 𝑁(0, 𝑅) (5.5b) 

 
 

where:  

• 𝒙, 𝑢(𝑡) and 𝒅 are the system states, controllable inputs and non-controllable inputs respectively.  

• 𝑓 is the deterministic dynamics,  

• 𝑔 is the diffusion function,  

• ω is a standard Brownian motion, and  

• 𝑣𝑘  is the observation noise.  

 

The above model formulation is an example of a grey-box model that includes physical dynamics in 𝑓 and 

describes stochastic elements by the Brownian motion that are too complex to model otherwise. Thilker et 

al. (2021a) modelled the thermal dynamics of a Danish school building in a DH network using a hydronic 

heating system with thermostatically controlled radiators. Such a model enables an MPC to control the ther-

mal dynamics and perform tasks such as peak shaving or load balancing. They find the following states 

useful to include in a grey-box model: 

 

• The indoor air temperature, 𝑇𝑖(𝑡). This is typically the variable that is important to maintain a com-

fortable indoor climate. 

• The temperature of the building envelope, 𝑇𝑤(𝑡). This contains important information about the in-

sulation-level and how much heat is stored in the walls. 

• The flow of the water in the space heating system, Φ(𝑡); this varies as the thermostats in the radia-

tors open and closes. 

• The temperature of the radiators in the building, 𝑇ℎ(𝑡) is the component that delivers the heat in 

the rooms. 

• The return water temperature, 𝑇ret(𝑡), is important since it determines the amount of heat the build-

ing uses. 

 

Together, the above states form a model that is sufficient in describing the important thermal dynamics in a 
large building in a DHN. The controllable input to the system, ( )u t is the set-point to the radiator thermo-

stats in the building. The map between the difference in set-point and room air temperature and how open 

the valves are was modelled using a sigmoid function. Before the actual implementation, the above model 

was tested in a simulation framework to investigate and fine-tune the MPC as to obtain the desired thermal 

behaviour of the building (Thilker et al., 2021b). 
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The next section briefly introduces the MPC implementation in building. 

5.3.2 Implementation of MPC in a Smart Building 

 

On a building level, the MPC has the objective to satisfy certain constraints (e.g., a comfortable indoor air 

climate at all times) while at the same time minimising some objective. For economic MPC (Kuboth et al., 

2019), typically, the objective is to minimise the heating costs while satisfying constraints on the thermal 

conditions of the building. This section presents a case study where the controller needs to adjust the ther-

mostatic setpoints to regulate the indoor air temperature. 

 

A well-designed MPC is capable of optimising both the thermal comfort of the indoor environment and energy 

usage (De Coninck and Helsen, 2016). If the building manager wants to help the district heating network 

lower the supply temperature and decrease peak loads, the cost in the objective function could follow a fictive 

price signal that reflects the degree to which it is acceptable to heat at any given time in order to achieve a 

lower peak demand on district-level. The next section shows results from the actual implemented MPC that 

demonstrates the building's ability to shift its heat demand given a fictive price signal. 

 

To see all the details in the MPC implementation, the reader is referred to Thilker et al. (2021a) and (Thilker 

et al., 2022b). 

5.3.3 Some Control Results from Borgerskolen 

 

Figure 5.3 shows closed-loop results of the implemented MPC in the Danish school building. The upper plot 

shows the heat price and the building's heat load. The middle plot shows the average indoor air temperature, 

the temperature constraints, and the sequence of optimal set-points. It is evident that the building is able to 

shift a significant amount of its heat load in the presented setup while respecting the comfort constraints. 

 

Since the controller uses the average indoor air temperature, variation in the temperature between the rooms 

is expected. The lower plot shows the individual room air temperatures. The temperatures range between 16 

and 26 °C during the experiment. It illustrates that even though the average temperature respects the comfort 

bounds, almost all rooms violate the constraints at some points. 

 

Some ideas to mitigate the large variance in the rooms could be to learn a set-point offset for each room 

using feedback from the occupants. Another is to use room-specific models where individual controllers for 

each room regulate the room air temperature independently from the other rooms. Thilker et al. (2021a) 

formulate ARX models to describe and predict the room air temperatures. Such models are also readily used 

for MPC. 
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Figure 5-3. Real-life control results of the control experiment carried out in the Danish school building, Borgerskolen. The 
upper plot shows the heat load on top of the electricity price levels. The middle plot shows the average indoor air tem-
perature together with the temperature bounds and the thermostatic set-point (control input). The lower plot shows the 
individual room air temperatures and reveals a large spread, which is not visible in the average temperature. 

5.4 Hierarchical control for future smart grids 

This section describes how the building controllers considered in the previous sections can be considered 

as the low-level controllers of a multi-level or hierarchical control setup for solving grid or ancillary service 

problems in future smart energy systems. Briefly speaking we will describe how the physics (dynamical for-

mulations) of the buildings and grids can be linked to the conventional electricity markets which is character-

ised by bidding and clearing (static formulations). Subsequently, we shall briefly outline how these principles 

can be generalised to multi-level and hierarchical control problems. 

5.4.1 Hierarchical Control for utilising energy flexibility 

In this section, it will be explained how to control the demand of smart buildings by generating energy prices 

such that the building reacts and adapts its consumption accordingly. The basic concept is illustrated by Fig. 

5.4, where a smart building, from an external perspective, takes an input (price) and gives and output (de-

mand). Analysed in this way, a model is developed to calculate an index denominated the Flexibility Function, 

which predicts demand as a dynamic function of price. The Flexibility Function could be any dynamic model; 

it has been proposed as one of the fundamental MIMs (Minimum Interoperability Mechanisms) for energy 

systems (Dognini et al., 2022). In (Junker et al., 2018), a linear model (step-response function model) is 

suggested. For nonlinear systems it is shown in (Junker et al., 2020) that a grey-box model using a set of 

non-linear stochastic differential equations might be more appropriate for some systems. In general, the 

flexibility function should be considered simply as link between price and demand. 
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Figure 5-4. The demand of a smart building can be predicted as a function of prices. 

Given a Flexibility Function for the building, a second controller can be formulated where the objective is to 

control the building’s demand according to some criteria, and the decision variable is the price (say, electricity 

price as a function of time). As shown in Figure 5.5, the Flexibility Function can be used to generate prices 

according to some reference. The reference could be a desired energy consumption in time. Notice how the 

demand acts as the feedback to the controller, closing the loop. 

 

 

Figure 5-5. Using a Flexibility Function to generate price signals and demand as control feedback. 

Let FF be the Flexibility Function that takes energy prices as input and gives the building’s expected demand 

as output, while rl is a reference load. Then, a simple upper-level optimisation problem can be written as: 

 

 

(5.6) 

where Cu is the future energy prices. Obviously, it might be necessary to impose limits on how much the price 

can change, requirements on the average value, and a more sophisticated optimisation problem than the 

minimum variance formulation as discussed in Junker (2019). Combining this optimisation problem with the 

lower-level optimisation problem of the building’s heating system, the Flexibility Function couples the two in 

an elegant fashion: 
 

 

 

where, in this case, the lower optimization problem is formulated as an economic MPC problem. As men-

tioned above, the Flexibility function is considered to be one of the fundamental MIMs (Minimum Interoper-

ability Mechanisms) for energy systems since it is instrumental for the coupling between the building level 

and upper level representing the grids and aggregators. 
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Notice how the two optimisation problems are solved independently from each other, thus preserving auton-

omy and privacy for the building owners while simultaneously allowing an aggregator to utilise the energy 

flexibility. In practice, there are going to be a lot of smart buildings for each aggregator that all have inde-

pendent control problems and preferences. This method scales well to this case since the computational 

burden for the upper-level remains constant — with the Flexibility Function simply representing the aggre-

gated response from the smart buildings (Junker, 2019). 

5.4.2 Multi-level control and markets 

 

Ultimately the purpose of the future smart energy system is to establish a connection between the controllers 

operating at local scales, and high-level markets operating at large scales. This includes coupling sectors 

and establishing dynamic markets to reflect an increasingly dynamic supply and demand of energy. Essen-

tially a spectrum of all relevant spatial aggregation levels (building, district, city, region, country, etc) has to 

be considered. At the same time, the established markets must ensure that all power systems (on all temporal 

and spatial scales) are balanced. Consequently, data-intelligent solutions for operating flexible electrical en-

ergy systems have to be implemented on all spatial and temporal scales. 

 

To address these increasingly important issues, several solutions have been proposed in recent years. Some 

significant solutions are Transactive Energy, Peer-to-Peer, and Control-Based solutions, as described in [De 

Zotti et al., 2018a].  

 

Traditionally, power systems are operated by sending bids to a market. However, in order to balance the 

systems on all relevant horizons, several temporal-specific markets are needed. Examples are day-ahead, 

intra-day, balancing and regulation markets. The bids are typically static and consisting of a volume and 

duration.  

 

Given all the bids, the so-called supply and demand curve for all the operated horizons can be found. Math-

ematically, these supply and demand curves are static and deterministic. Merit order dispatch is then used 

to optimise the cost of generation. However, if the production is from wind or solar power, then the supply 

curve must be stochastic, and the demand flexibility has to be described dynamically— e.g., by the introduced 

Flexibility Function. Consequently, it is believed that it is necessary to introduce new digitised markets, which 

are dynamic and stochastic. And instead of using a large number of markets for different purposes (fre-

quency, voltage, congestion, etc.) and on different horizons, we will suggest using concepts based on the 

Flexibility Function and stochastic control theory; exactly as described in the previous section for the two-

level case. We call this a Smart-Energy Operating-System (SE-OS) (Madsen et al., 2015, 2016, Madina et 

al., 2019). 

 

If we zoom out in space and time, i.e. consider the load in a very large area on a horizon of days, or maybe 

the next day, then both the dynamics and stochasticity start to matter less (and may even be more or less 

eliminated); hence, we can use conventional market principles, as illustrated in Figure 5.6. If we zoom in on 

higher temporal and spatial resolutions (e.g., a house), the dynamics and stochasticity become important, 

and consequently we will suggest using the control-based methods for the flexibility as discussed in this 

chapter. This implies that in real-time the link is handled simply by a one-way communication or broadcasting 

of a price-signal. 

 



 
 

 55/103 

 

Figure 5-6. Hierarchical control and markets. 

 

All these principles for forecasting, control and optimisation are included in the so-called Smart-Energy Op-

erating-System (SE-OS), which is used to develop, implement, and test solutions (layers: data, models, op-

timisation, control, communication) for operating flexible electrical energy systems at all scales. See (Madsen 

et al., 2015, 2016, Madina et al., 2019, De Zotti et al., 2018b) for further information. 

 

The simplicity of broadcasting price signals for activating demand-response needed e.g., for a distribution 

system operator, implies that basically all appliances can contribute to unlocking the needed flexibility at the 

relevant spatial and temporal coordinates. At the same time, the end-user can easily set up local preferences 

in their Home Energy Management Systems (HEMS) in a weighted combination of a focus on e.g., comfort, 

costs, emission and energy efficiency. The overall simplicity of the concepts ensures fast adaptation and 

stimulates an effective scale up of the use of flexibility and demand response technologies in the market. 

 

Basically, the setup decomposes the computation effort in several computations at many levels of the hier-

archy. Similarly, the Home Management Information Systems (HMIS) can be used to provide information 

about the aggregated flexibility which can be offered from a particular building, and for energy communities 

similar aggregation principles apply.  

 

In conclusion, the Smart Energy OS principle is using the Flexibility Function as one the fundamental MIMs 

to ensure a minimal but sufficient interoperability on all relevant levels, and for many appliances low-cost 

solutions can be established using mobile phones and similar edge computing technologies. Data is typically 

kept at the edge (the building level), and computations carried out, in a coherent hierarchy consisting of edge, 

fog and cloud levels with privacy, transparency and fairness in mind. 

 

Regarding data management, security and privacy aspects we refer to the Annex 81 Report A Data Sharing 

Guideline for Buildings and HVAC Systems (White et al., 2023) for comprehensive discussions and guidance. 
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6. Data-Driven Fault Detection and Diag-

nosis 

• Data-driven FDD process. 

• Insights into applying data-driven FDD in various building subsystems and the whole building. 

• Common data sources for the development of data-driven FDD. 

• Important metrics for evaluating data-driven FDD methods. 

• Future opportunities to advance data-driven FDD. 

 

6.0 Introduction 

Building systems, including heating, ventilation and air conditioning (HVAC) systems, are usually subject to 

faults that can lead to undesirable performance, such as excessive energy waste, high maintenance costs, 

uncomfortable indoor thermal environments, and poor air quality. These faults are the result of sensor failure, 

equipment failure, or faulty system operation. Studies have shown that 15%-30% of energy may be wasted 

due to building system faults and improper controls (Katipamula & Brambley, 2005). Therefore, fault detection 

and diagnostics (FDD) or automated fault detection and diagnostics (AFDD) as it is also commonly referred 

to, is crucial to ensure reliable system operation and avoid energy waste. It is reported that FDD users in the 

office and higher education market sectors of the United States were able to achieve 10% median energy 

savings annually with two-year simple payback period (Kramer et al., 2020). It demonstrates the high com-

petitiveness of FDD systems as a profitable investment option in the building sector. 

 

Over the past decades, many FDD methods have been developed. With the advancement of data science 

and the wide adoption of building automation systems (BAS) or other smart building technologies, data-

driven FDD is gaining increased attention. Compared to the traditional expert knowledge/rule-based ap-

proaches that are typically seen in commercial-off-the-shelf FDD products, data-driven FDD requires little or 

no a priori knowledge and has the potential to achieve high detection and diagnostic accuracy at relatively 

low cost (Hu et al., 2021a). 

 

Despite the promise of data-driven FDD, the market has been slow to adopt it (Granderson et al., 2017; Wall 

& Guo, 2018). This chapter aims to advance the development and market adoption of data-driven FDD by 

providing a survey of the state-of-the-art technologies from three main aspects: process (Section 6.2), sys-

tems studied (Section 6.3), and evaluation metrics (Section 6.4). Section 6.5 discusses challenges and op-

portunities for future advancement of data-driven FDD. Section 6.6 concludes the chapter. A more detailed 

review of the state-of-the-art technologies can be found in (Z. Chen et al., 2023). 

6.1 Main Steps of Data-driven FDD Process 

Based on the literature, a data-driven FDD process can be summarized as shown in Figure 6.1. Methods 

used in each FDD step are discussed in the following subsections. 
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6.1.1 Data Collection 

Collecting data from a BAS is often the most time-consuming and labor-intensive process due to the fact that 

individual buildings have unique BAS configurations, database structures, and datapoint naming conventions 

(Pradhan et al., 2022). The use of standardized communication protocols, e.g., Building Automation and 

Control Network (BACnet), and metadata schemas, e.g., Project Haystack, Brick, and the recent ASHRAE 

223p standard (Pritoni et al., 2021), can effectively ease the data collection process. Nevertheless, FDD 

applications that utilize metadata or semantic graph are still very few and underdeveloped (Ploennigs et al., 

2017).  

6.1.2 Data Cleansing 

Often, datasets obtained from the BAS or other sources may be incomplete due to sensor and equipment 

failures, communication or transmission issues, data corruption, or inconsistencies due to sensor noise, thus, 

leading to loss of valuable information (Pritoni et al., 2018). These issues exist in almost all kinds of sen-

sors/automation systems and can significantly affect the FDD outcomes since most data analysis and statis-

tical tools are not designed to handle incomplete data. Existing literature on data imputation methods for 

building data has focused on univariate time series data using statistical methods (Ouyang et al., 2017), 

nonlinear machine learning, and deep learning (Pradhan et al., 2022; J. Yang et al., 2019). Ensemble meth-

ods, which utilize multiple imputation methods for improved missing value prediction, have also been devel-

oped recently (Zhang, 2020). While most of the techniques reported for missing data imputation are focused 

on generic data-driven applications, there are few studies addressing the missing data issue for FDD pur-

poses, such as (D. Li et al., 2019) . 

6.1.3 Data Preprocessing 

Data used for training FDD algorithms often need to be preprocessed beforehand to achieve desired training 

performance. This step may include feature selection, data reduction, data scaling, data transformation, data 

partitioning, etc (Fan et al., 2021). Typically, this step is performed offline (e.g., selecting some relevant 

features from historical data), and then the results of the pre-processing (e.g., the selected features), are 

applied to the snapshot data. This section mainly reviews the feature selection techniques that are often used 

to find the key inputs for a data-driven model used for the FDD process. Using only selected features instead 

of the entire dataset reduces the model complexity and model overfitting issues. 

 

Various feature selection methods, such as filter, wrapper, embedded, and hybrid methods, have been re-

ported for FDD applications (Chandrashekar & Sahin, 2014). Filter methods, like the information greedy fea-

ture filter (IGFF) developed by (X. Li et al., 2021), are computationally fast and less prone to overfitting. 

However, they may not always find the feature subset with the highest model accuracy (Zhang & Wen, 2019). 

Wrapper methods, which train and evaluate specific models with different feature combinations, are compu-

tationally expensive and susceptible to overfitting (Zhang et al., 2020). Embedded methods that combine 

both the filter and wrapper methods are usually incorporated into a specific learning algorithm such as deci-

sion trees (DT) and random forest (RF) (R. Yan et al., 2016). Embedded methods that are not incorporated 

into the learning are categorized as hybrid methods, such as (Han, Gu, Hong, et al., 2011; Han, Gu, Kang, 

et al., 2011). 

 

Recently, feature extraction methods directed at identifying and extracting interesting "localized" patterns 

within a timeseries to guide the feature selection process have also gained attention (Zhang et al., 2020). 
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Figure 6.1: A General Data-driven FDD Process. 

6.1.4 Baseline Establishment 

To enable FDD, a baseline representing normal system operation is often required. A true fault-free status is 

rarely achievable for real buildings; therefore, fault detection typically identifies when a building's status sig-

nificantly differs from its baseline (Y. Chen et al., 2021). Baselines can be generated by simulation (Miyata 

et al., 2020) or constructed from historical data. 

 

HVAC systems exhibit different dynamics under various operation modes (heating, cooling, etc.), and it is 

challenging to differentiate variations caused by weather and/or internal conditions from abnormalities trig-

gered by faults (Y. Chen, Wen, & Lo, 2022). Most data-driven FDD methods compare real-time operation 

data with the baseline, necessitating that the operation mode of the baseline matches that of the incoming 

snapshot data. Existing studies focus on pattern recognition and motif discovery strategies to construct a 

baseline that accounts for outdoor weather conditions, daily internal load profiles, and temporal association 

rules (Huang et al., 2021; Lin & Claridge, 2015; Piscitelli et al., 2020). A baseline model should ideally incor-

porate and learn changes influenced by specific control strategies implemented, rather than detecting them 

as faults. 



 
 

 61/103 

6.1.5 Fault Detection 

Data-driven fault detection strategies have shown promise in efficiently characterizing HVAC system opera-

tions and developing accurate, scalable models while reducing engineering time and labor cost. Fault detec-

tion methods can be categorized as supervised, semi-supervised, or unsupervised ((Mirnaghi & Haghighat, 

2020; Zhao et al., 2019). 

 

Supervised methods require both normal operation and labeled fault data. Supervised methods can be fur-

ther categorized into classification methods or regression methods based on the type of model output. While 

classification methods such as SVM (Madhikermi et al., 2019; Montazeri & Kargar, 2020) and DT  (Capozzoli 

et al., 2018; Piscitelli et al., 2020)are used to predict whether the incoming data belongs to the fault or fault-

free class, regression methods such as support vector regressions (SVR) (J. Liu et al., 2018; Zhao et al., 

2013) and neural networks (NN) (Du et al., 2014; Miyata et al., 2020; Sipple, 2020) typically predict continu-

ous variables, representing the system operation status, which is then compared with the baseline to identify 

any occurring faults. Both types of supervised methods have been widely used for fault detection in building 

HVAC systems. However, the challenge with supervised methods is in obtaining sufficient labeled fault data 

for training the models, often leading to imbalanced classes. Given the difficulty and the cost to label data, 

models used by supervised methods are often trained using data collected from older components or simu-

lation models which can lead to lower detection accuracy and higher false alarm rates. 

 

Semi-supervised methods are suitable when limited labeled fault data is available. Semi-supervised methods 

transfer unlabeled data into labeled classes by comparing the incoming data with normal operation, and 

updating the training set iteratively (K. Yan, Chong, et al., 2020). Although semi-supervised methods perform 

better when limited labeled fault data is available, semi-supervised methods have a higher computational 

cost than supervised learning (Mirnaghi & Haghighat, 2020). 

 

Unsupervised methods do not require fault labels and are useful for discovering hidden correlations and fault 

impact analysis. Some of the popular methods in this category are clustering algorithms (Cheng et al., 2016; 

Du et al., 2014; Fan et al., 2015; Gunay & Shi, 2020) and principal component analysis (PCA) (Montazeri (Y. 

Chen et al., 2021; Y. Chen, Wen, & Lo, 2022; Montazeri & Kargar, 2020) which are used typically with pattern 

recognition and motif discovery methods. Since only fault-free data is required for deploying unsupervised 

methods, these methods are easier to develop and deploy for fault detection purposes. 

6.1.6 Fault Diagnosis 

Identifying or localizing the root cause of a fault or anomaly is typically more challenging than detecting the 

anomaly, since different faults (e.g., malfunctioning hardware, software errors) can lead to the same symp-

tom. Correctly diagnosing the root cause of a fault often requires a detailed knowledge of the HVAC config-

uration and control strategies, both of which are specific to a building. Bayesian network (BN) models based 

on the conditional probability theorem that predicts the fault beliefs based on a set of observations are popular 

(Lampis & Andrews, 2009). BN models can incorporate the system structure information through probabilistic 

conditional relations between faults and their symptoms. These probabilities can be updated after new ob-

servations (evidence) of the system are obtained. Further, by adding uncertainty factors for reasoning, the 

BN model can avoid incorrect diagnosis by avoiding under-responsiveness or over-responsiveness to evi-

dence (Zhao et al., 2017). Successful implementation of BNs for both component-level and system-level fault 

diagnosis has been demonstrated in the existing literature, such as (Zhao et al., 2015, 2017) for AHUs, (Xiao 

et al., 2014) for VAV terminal units, and (Verbert et al., 2017) for system-level HVAC faults with interdepend-

encies between components. 

 

More recently, (Y. Chen, Wen, Pradhan, et al., 2022) developed a discrete BN-based method for cross-level 

faults diagnosis in commercial buildings. Unlike continuous BNs which use continuous probability distribu-

tions in each node of the network, the continuous variables are discretized to represent fuzzy events in a 
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discrete BN ((İçen & Ersel, 2019). This makes modeling the BN parameters easier and more efficient, espe-

cially when obtaining parameters from expert knowledge and incomplete field data (Rohmer, 2020).  

 

Alternatively, dynamic BN models that describe the temporal relationship of the fault states within each time 

slice have shown to be effective for fault diagnosis as well. By carrying past information, a dynamic BN allows 

fault beliefs to accumulate over time, thus helps eliminate measurement errors and improve diagnosis accu-

racy (Zio & Peloni, 2011). 

 

Other diagnostic inference methods such as fault-trees that are based on a decision tree and multiple binaries 

of if-statements are usually time-consuming and may be highly dependent on domain expertise (Mirnaghi & 

Haghighat, 2020). Alternatively, classification methods such as SVMs (Lee et al., 2021)and ANNs (Du et al., 

2014; Miyata et al., 2020) are also popular. These methods generally require a large amount of labeled data 

for model training. Additionally, the inference process behind the diagnosis of such black-box models lacks 

transparency and interpretability (G. Li et al., 2021; T. Li et al., 2021). 

6.1.7 Fault Prognosis 

Fault identification and diagnosis through FDD may not always be sufficient, as some faults in building HVAC 

systems occur gradually, leading to excess operation and maintenance cost (C. Zhong et al., 2019), and 

energy waste (Mirnaghi & Haghighat, 2020) over time. It is estimated that over 20% of HVAC systems are 

running under early stage of gradual faults resulting over 15% in energy waste (Yu et al., 2014). Therefore, 

data-driven fault prognosis, which refers to identifying impending faults ahead of time and estimating how 

soon a fault may occur by analyzing historical or real-time measurements for predictive maintenance and 

repair schedules, is essential for ensuring the safety, stability and for increasing the lifespan of HVAC sys-

tems.  

 

Data-driven fault prognosis methods have been gaining attention in various industries (K. Zhong et al., 2019), 

but their development for HVAC systems is still in its infancy. Notable applications include time-to-failure for 

chillers and boilers (C. Yang et al., 2020), motor failure analysis (Ahmad & Atta, 2014), remaining useful life 

of heat exchangers (Wang et al., 2015), and efficiently predicting the lifespan of AHUs and their components  

(Y. Yan et al., 2017). 

 

Building on the success of data-driven models in other industrial sectors, techniques such as Recurrent 

Neural Networks (RNNs) have shown promise for fault prognosis by exploiting temporal correlations in the 

data (Wu et al., 2020). In addition to RNNs, other approaches like Autoencoders (AE) (He et al., 2021) and 

Restricted Boltzmann Machines (RBM) (Niu et al., 2021) have also been applied in recent data-driven models 

for fault prognosis, highlighting their potential for building HVAC systems. 

6.2 Systems Studied with Data-driven FDD 

Data-driven FDD methods have been reported to be applied to many HVAC components and subsystems 

for various types of faults. This section summarizes (1) the systems that data-driven FDD have been applied 

to; (2) the identified faults associated with the systems; and (3) the main data source utilized when developing 

and evaluating a data-driven FDD method. 

6.2.1 Faulty Systems and Identified Faults 

HVAC faults can be categorized as hardware and software faults by the types of components. Hardware 

faults further include equipment faults, sensor faults, and controlled device (including actuator) faults. Soft-

ware faults further include controller faults (e.g., unstable control), human faults (operator faults) and control 
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logic errors. Figure 6.2 illustrates the workflow of these categories. Reviews on the impact of faults in each 

category are out of the scope of this chapter. 

 

 
Figure 6.2: Fault distribution in a HVAC system (expanded from (Yu et al., 2014)). 

 

Fault detection and diagnostics can be implemented at the building level, system/subsystem level (e.g., an 

air handle unit), and/or component level (e.g., a damper) (Wen et al., 2019). Building-level FDD aims to detect 

and diagnose the occurrence of non-optimal operational patterns by identifying anomalous energy trends in 

the building energy consumption time series (Capozzoli et al., 2018). At this scale, classification, regression, 

and pattern recognition techniques are employed to estimate the baseline for the detection of anomalies 

while sub-meter load data are used to infer the root cause of anomalies at whole-building level (Chiosa et 

al., 2021, 2022). 

 

For large size buildings, FDD is often applied to AHU-VAV systems, fan coil units (FCU), chillers, and boilers, 

etc. Yet for small and medium sized buildings, FDD is usually applied to heat pumps and window air condi-

tioners. From the reviewed papers, the most popular research subjects are secondary AHU-VAV systems 

(35%) and chillers (32%), followed by whole-building studies (17%) and VRFs (7%). The top two faulty sys-

tems (i.e., secondary systems and vapor compression systems) and the corresponding classification of the 

faults in these systems are illustrated in Figure 6.3. 

 

Although most of the literature on FDD focuses on the system/component level, FDD at whole-building level 

has increasingly attracted the interest of researchers, as it involves complex interactions between building 

dynamics, external climatic conditions, system operating schedules, and occupant comfort. The main objec-

tives of building-scale FDD include recognizing typical energy consumption patterns, detecting anomalies, 

and diagnosing these anomalies at the sub-load level. Expert domain knowledge is crucial for achieving 

these objectives. However, due to the lack of ground-truth datasets, unsupervised learning and pattern recog-

nition techniques are the most commonly employed approaches for whole-building level FDD applications 

(Y. Chen et al., 2021; Y. Chen, Wen, & Lo, 2022; Y. Chen, Wen, Pradhan, et al., 2022). 

6.2.2 Data Source 

For data-driven FDD method development, labeled normal and fault data are needed for training and method 

evaluation purposes. Among the papers reviewed, 48% use lab experiment data, 32% use real building data, 

and 20% use simulation data. The coupling between the data source and the system type is further shown 

in Figure 6.4. 

 

Lab experiment data were most adopted. They had been applied in tree-structured learning FDD of chillers 

(D. Li et al., 2016), GAN-based FDD of AHUs (K. Yan, Huang, et al., 2020), deep learning-based FDD of 

VRF systems  (Guo et al., 2018) and so on. However, there are limited examples of publicly available da-

tasets that have verified ground-truth information on the presence and absence of faults. Four research pro-

jects offer valuable publicly available experimental data. The first two are ASHRAE Project 1043-RP data 
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(Comstock & Braun, 1999) and ASHRAE Project 1312-RP data (Wen & Li, 2012), which have been widely 

used in chiller and AHU FDD studies, respectively. The third is the building fault detection data to aid diag-

nostic algorithm creation and performance testing (Granderson et al., 2020), which includes two experimental 

test datasets for a single-zone AHU-CAV and a single-zone AHU-VAV serving a real building zone, respec-

tively. The fourth is the LBNL fault detection and diagnostics datasets (Granderson et al., 2022), which in-

cludes an RTU experimental test dataset.  

 

 

Figure 6.3: Fault classification of HVAC systems. 

 

Simulated data from non-proprietary physical model-based simulation software has been utilized in various 

studies. Examples include (Du et al., 2014) using a TRNSYS-based simulation testbed for validating a neural 

networks algorithm for AHU anomalies, (Montazeri & Kargar, 2020) using HVACSIM+ software for SVM and 

PCA FDD methods, and (Lu et al., 2021) conducting a comprehensive fault impact analysis using a Modelica-

based framework. Since these simulation software are designed for fault-free operations, fault generators or 

similar means are needed to simulate faulty operations, which can sometimes result in unexpected numerical 

difficulties, such as long simulation times, inaccurate results, or crashing of the simulation program. There-

fore, when modeling faults, it is important to avoid some common causes of numerical difficulties, such as 

numbers that are beyond the computer precision (Z. Chen, 2019) and discontinuous functions (Z. Chen et 

al., 2021). When modeling faults for large-scale systems, advanced numerical solvers, such as (Z. Chen et 

al., 2022), that are both efficient and robust shall be considered. In terms of open-sourced simulation da-

tasets, LBNL FDD datasets (Granderson et al., 2022) include large simulated datasets with verified infor-

mation on the presence and severity of faults spanning seven HVAC systems and configurations: a single-

duct AHU, a RTU, a dual-duct AHU, two VAV boxes, a fan coil unit, a chiller plant, and a boiler plant. HVAC-

SIM+ and Modelica-EnergyPlus co-simulation were employed to carry out simulations of more than 250 

faulted or fault-free condition states (e.g., mechanical faults, control sequence faults, sensor faults, etc.) over 

a full year of operation.  
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Figure 6.4: Alluvial plot for the reviewed literature classified by data source and system type. 

 

Although 32% of the reviewed studies use real building data, half of the studies focus on the detection of 

energy anomalies that only require energy consumption data. Publicly available power consumption datasets 

that can be used to validate anomaly detection algorithms are rare. The competition “Power Laws: Detecting 

Anomalies in Usage” offers a few datasets with hand-labeled anomalies corresponding to different types of 

building sites from different geographies (https://www.drivendata.org/ ). LBNL FDD datasets (Granderson et 

al., 2020) also include months of field measured RTU data for a compressor control fault and a refrigerant 

undercharging fault. Obtaining field measurements with labeled faulty operation data is challenging due to 

the need for manual investigation or maintenance records. Therefore, proper documentation of system 

changes is crucial to differentiate between normal and faulty operations. In the reviewed studies, real building 

operation data has been used to detect AHU faults (Gunay & Shi, 2020), chiller faults (Lee et al., 2021), 

whole-building level faults (Y. Chen et al., 2021; Y. Chen, Wen, & Lo, 2022) and so on.  

 

In addition to the labeled time-series system operation or energy use data under normal and fault conditions, 

other data sources have also been utilized to support the data-driven FDD algorithms. For example, expert 

knowledge, maintenance records, building information models (BIM), and real-time occupancy data. Expert 

knowledge has been integrated into data-driven FDD approaches to (1) detect outliers in the data prepro-

cessing step (Fan et al., 2015), (2) develop, select, and interpret the characteristic features of faults (Verbert 

et al., 2017; Xue et al., 2017), and (3) support the selection of layers, nodes, and parameters in the BN-

based or tree-structured FDD algorithms (Y. Chen, Wen, Pradhan, et al., 2022; D. Li et al., 2016). Mainte-

nance records were utilized to label the ground truth of field measurements, i.e., whether the collected data 

contain faults or not (Lee et al., 2021; Taal et al., 2018). The BIM was integrated into model-based FDD to 

provide building design information (e.g., architecture geometry and building equipment information) (Dong 

et al., 2014). Real-time building occupancy data from internet of things sensors were employed as an addi-

tional data stream to detect the degraded building operation performance (Cheng et al., 2016) . 

6.3  Evaluation Metrics for Data-driven FDD 

It is critical to evaluate and quantify the performance and effectiveness of data-driven FDD methods by using 

dedicated metrics. Commonly used metrics for evaluating a data-driven FDD are discussed in this section. 

https://www.drivendata.org/
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6.3.1 General Evaluation Metrics 

(Lin et al., 2020) summarized the evaluation metrics for general FDD applications. To assess the perfor-

mance of a fault detection problem, the evaluation metrics include the true positive rate (TPR), true negative 

rate (TNR), false positive rate (FPR), false negative rate (FNR), and no detection rate (NDR). To assess a 

fault diagnosis method, the evaluation metrics often include the correct diagnosis rate (CDR), the misdiag-

nosis rate (MDR), and the no diagnosis rate (NDgR). Figure 6.5 visualizes the definition of these metrics in 

a confusion matrix, which will be further discussed in the section below. 

6.3.2 Classification Problem Metrics 

An FDD problem is essentially a classification problem; fault detection is a binary classification problem, while 

fault diagnosis is a multi-class classification problem. The general metrics described above are often com-

bined visually or quantitatively into a classification problem metric for a more in-depth evaluation of data-

driven classifiers. These classification problem metrics include confusion matrix, accuracy of correct predic-

tions, F-measure (or F-score), Receiver Operator Characteristic (ROC), and Area Under the Curve (AUC). 

 

Confusion Matrix. A confusion matrix is a visualization of prediction results for a classification model (Deng 

et al., 2016). It depicts the degree of algorithm confusion within different classes and is independent of a 

concrete classification algorithm (Han et al., 2020). Each matrix element represents the test observations, 

with the actual (true) class in rows and the predicted class in columns. The diagonal elements show the 

correct predictions while the off-diagonal elements show the incorrect predictions and how they were mis-

classified.  

 

 

Figure 6.5: Example of a confusion matrix. Given the predictive fault types on the columns and the actual 

fault types on the rows, the matrix shows the correct diagnosis (CD), misdiagnosis (MD), true positives 

(TP), true negatives (TN), false positives (FP) and false negatives (FN). 

 

Accuracy of Correct Predictions. The overall accuracy of correct predictions is defined as the number of 

correct predictions (i.e., the diagonal elements of the confusion matrix) divided by the total number of obser-

vations, as shown in Equation (6.1). This is a simple and intuitive measure, yet it may fail on classification 

problems with a skewed class distribution. 

 

Accuracy =
TP + TN

TP + TN + FP + FN
 (6.1) 

 

F-Measure. F-measure (Pillai et al., 2012) is a comprehensive performance metric to evaluate the quality of 

a classifier which considers the class-specific performance, as shown in Equation (6.2). F-measure ranges 

from 0 to 1. The larger the F-measure is, the better the comprehensive performance of the classification 

model is. In the equation, "Precision" refers to the proportion of correctly diagnosed samples in all positive 

samples, while "Recall" refers to the proportion of correctly diagnosed samples in the true samples. 

 

F = 2 ⋅
Precision ⋅ Recall

Precision + Recall
 (6.2) 
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Precision =
TP

TP + FP
 (6.3) 

 

Recall =
TP

TP + FN
 (6.4) 

 

ROC and AUC. The ROC curve is a graph showing the performance of a classification model at all classifi-

cation thresholds (McClish, 1989) which plots two parameters: TPR and FPR. AUC measures the entire two-

dimensional area underneath the entire ROC curve from (0,0) to (1,1). A higher AUC indicates that the model 

performs better in distinguishing between positive and negative classes. (Sipple, 2020) used AUC to compare 

the anomaly detection performance of various models on predicting failures of HVAC equipment. 

6.3.3 Statistical Significance Tests 

Statistical significance (or hypothesis) tests can aid in comparing the performance of different classification 

models. The purpose of statistical significance testing is to help gather evidence of the extent to which the 

results returned by the evaluation metrics are representative of the general behavior of the classifiers. How-

ever, it is noted that significance testing never constitutes a proof that the observation is valid. It provides 

added support for the observations. The frequently used significance tests, for data-driven FDD, include the 

t-test (Kim, 2015), McNemar’s Test (Lachenbruch, 2014), Wilcoxon’s signed-Rank Test (Woolson, 2007), 

Friedman Test (Friedman, 1937), Nemenyi Test (Nemenyi, 1963), etc. For example, (Han et al., 2020) used 

Friedman Test and Nemenyi Test to evaluate the performance of different classification models on diagnos-

ing the chiller faults. 

6.4  Future Challenges and Opportunities 

Although research on data-driven FDD has made great advancements in recent years as discussed above, 

its broad market adoption remains limited. In this section, we discuss some of the ongoing efforts and chal-

lenges to further the development and market adoption of data-driven FDD. 

6.4.1 Real-building Deployment 

Although much research has been conducted to develop and implement data-driven FDD methods for build-

ing systems, most of the studies developed or validated their data-driven methods in simulated environments, 

in laboratory settings, or using small-scale HVAC systems. Online and real-time implementations of data-

driven FDD methods in large-scale systems in real buildings, that can demonstrate the method’s perfor-

mances under various weather conditions, are still rare and in its infancy stage. Reliable, fast and computa-

tionally affordable solutions that are readily deployable in the field have not been explored sufficiently 

(Mirnaghi & Haghighat, 2020). Real building deployments are challenging due to incomplete information and 

uncertainty (Zhao et al., 2019). The main factors contributing to this challenge are lack of sensors, poor 

sensor accuracy, imbalance of fault and fault-free training data, ad-hoc naming conventions for data points, 

non-standardized sensor installation and control logic, and missing data (Zhao et al., 2019). A recent study 

has shown that data uncertainty has a significant impact on the performance of SVM algorithms for chiller 

fault diagnosis (X. Li et al., 2021). Validation of data-driven FDD in terms of not only accuracy but also deci-

sion-making with real-world uncertainty is needed to overcome market barriers. 

6.4.2 Performance Evaluation, Benchmarking, and Fault Impact Analysis 

In the literature, there are limited studies that compare the performance between FDD methods, especially 

under different categories (e.g., data-driven vs rule-based, supervised vs unsupervised). More comparison 

studies are needed to demonstrate the performance of and identify the weakness of data-driven methods. 

On the other hand, establishing common FDD datasets with validated ground-truth is needed to facilitate the 
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assessment of different FDD methods. LBNL has released large FDD datasets, including experimental, sim-

ulated, and real building data, to support this effort (Granderson et al., 2022). 

 

In building HVAC systems, there are faults that generate relevant effects while others have negligible symp-

toms. However, the performance evaluation process of a FDD method is mostly based on the calculation of 

classification accuracy metrics without considering the importance of prioritizing faults with most adverse 

impacts. The impact assessment through novel weighted multi-criteria key performance indices (KPIs) is thus 

needed to put the right attention on different faults considering their effects in terms of energy consumption, 

greenhouse gas (GHG) emissions, energy costs, thermal comfort and indoor air quality (IAQ) according to 

their severity and occurrence frequency. For example, (Y. Chen, Lin, et al., 2022) developed a simulation-

based framework for evaluating the fault effects in FCU. They also proposed a metric, namely the fault symp-

tom occurrence probability (SOP), to assist the fault prioritization. (Lu et al., 2021) conducted a comprehen-

sive fault impact analysis and robustness assessment of the high-performance control sequences from 

ASHRAE Guideline 36 using Modelica-based simulation with KPIs to evaluate fault impacts from the aspects 

of energy consumption and energy cost, control quality factor, thermal comfort, ventilation, and the power 

system. 

6.4.3 Scalability and Transferability 

HVAC systems in large commercial buildings are typically designed and constructed in a unique way for each 

building. Each building may have its own unique boundary conditions, such as weather, occupancy, and 

internal load schedules that vary daily. As a result, data-driven FDD method developed for one building may 

not be applicable to another building. The following research areas may be considered to improve the scala-

bility and transferability of a data-driven FDD method.  

 

Hybrid approach. Data-driven FDD methods require a considerable amount of data to exploit enough relia-

ble and robust extracted knowledge. However, data-driven FDD methods generally cannot extrapolate well 

beyond the range of training data related to specific boundary conditions, limiting then the scalability and 

transferability of detection and diagnosis logics among different systems (Frank et al., 2016). The expert-

based approach, in contrast, has a strong capability for replicating and transferring expert diagnostic reason-

ing, especially in cases where initial information is not enough for deploying a data-driven process. Integration 

of both approaches may significantly improve the robustness, accuracy, and generalizability of FDD tools 

designed for building energy system applications. 

 

Transfer learning. Besides the hybrid approach, transfer learning is being investigated as a fully data-driven 

solution to address the scalability issues of FDD strategies. Transfer learning (Pan & Yang, 2009), can ef-

fectively reduce the time to re-collect labeled data and re-train FDD algorithms, and thus reducing develop-

mental costs. Recently, there has been some discussions about transfer learning in the building FDD field. 

For example, (Dowling & Zhang, 2020) demonstrated a transferable Bayesian classifier for detecting supply 

fan degradation fault due to fouling filter in a VAV system. (Miyata et al., 2021) demonstrated transfer learning 

on convolution neural networks (CNN) for fault diagnosis of central chilled water plants. (X. Liu et al., 2021) 

developed a transfer-learning-based CNNs for fault diagnosis of chillers. More studies are needed to further 

explore the potential of using transfer learning to improve the scalability of data-driven FDD. 

 

Metadata schemas. Metadata schema or semantic data model allows data from different buildings to be 

described in a consistent and standardized manner. Using a common metadata schema not only eases the 

data collection process (as mentioned in Section 6.2.1), but also makes a data-driven FDD method more 

generic. Without a common metadata schema, a data-driven FDD method must be hard-coded to a specific 

data source of a specific building, thus limiting its scalability and transferability. In addition, metadata sche-

mas can provide well-organized information about the nature of the data (e.g., type of sensor, causal rela-

tionship between points), which allows expert knowledge to be incorporated into a data-driven method more 
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effectively. Project Haystack, Brick, and the recent ASHRAE 223P standard (Pritoni et al., 2021) are good 

options of metadata schema for building energy systems. 

6.4.4 Interpretability 

For a market-oriented FDD product, its interpretability (i.e., the ability to explain how a fault is detected or 

diagnosed) is very important. In fact, building professionals tend to be suspicious of the output of data-driven 

processes because they are unable to fully understand the model inference mechanism (Fan et al., 2019). It 

is becoming more and more important to develop FDD tools that are capable of providing feedback about 

the reasons behind a certain detection or diagnosis result with robust indication of the supporting and con-

flicting evidence towards it. 

 

In this respect, hybrid approaches, such as BNs that incorporate causal relationships between faults and 

symptoms, show great advantages. However, for pure black-box approaches, such as ANN, users are often 

unable to explain how they make decisions due to the models non-intuitive and non-transparent nature. The 

development of an explainable framework can help increase user confidence in such models. While inter-

pretability continues to be a challenging task, a few studies have focused on this issue in recent years. For 

example, (Madhikermi et al., 2019) used Local Interpretable Model-agnostic Explanations (LIME) to explain 

behaviors of SVM and ANN in detecting AHU heat recycler fault. (G. Li et al., 2021) developed an explainable 

CNN-based FDD by utilizing Gradient-weighted Class Activation Mapping and validated it using the ASHRAE 

1043-RP data. 

6.4.5 Cyber Security and Data Privacy 

Modern BAS are typically connected to internet or enterprise network to reduce operational cost and increase 

automation. There are many benefits that a BAS can gain through the network connectivity, such as remote 

management, cloud computing, and data sharing (Fu, O’Neill, Yang, et al., 2021). However, a network con-

nectivity also makes BAS and the associated systems and devices potential targets of cyber attacks, leading 

to comprised systems and loss of credential information. For building energy systems, cyber attacks can 

disrupt the normal operation and result in serious consequences, such as occupant discomfort, energy waste, 

equipment downtime, and disruption of grid operation (Fu, O’Neill, Yang, et al., 2021). Therefore, there is a 

need for a FDD framework that takes cyber security and data privacy into account. For example, researchers 

are currently developing a Cyber Defense and Resilient System (CYDRES) that employs fault detection, fault 

diagnostics, fault prognosis, and cyber-resilient control scheme to enhance Grid-interactive Efficient Build-

ings (GEBs) tolerance to both cyber-related and physical faults (Fu, O’Neill, Wen, et al., 2021; Fu, O’Neill, 

Yang, et al., 2021). 

6.4.6 User Experience 

Each of the previously mentioned future challenges will to some extend affect the user acceptance of data-

driven FDD services. The user/client is usually the one paying for the service, thus creating a successful user 

experience will also benefit user acceptance of FDD as a service and ease a widespread implementation in 

real buildings. A positive user experience depends on how information is presented to the user to be able to 

understand what is happening in the building/system and why. In this regard, dedicated dashboards for dif-

ferent building users (facility managers, building owners, building tenants) are of utmost importance (Peng 

et al., 2022). A proper visualization of measurement data predicted data from data-driven models and case-

specific key performance indicators all contribute to a better user experience and thus higher acceptance of 

data-driven methods among clients/users. A proper indication of the severity of a fault is important for the 

person, usually the facility manager, who has to repair the faulty systems. Clustering and ranking 

faults/alarms based on their severity and criticality for the operation of the system/building is a time-saving 

measure for the facility manager in an often-hectic workday. More research is needed to understand how to 

improve the user experiences for data-driven FDD methods. 
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6.5  Conclusion 

This chapter provides a comprehensive review of the process, systems studied, and evaluation metrics for 

data-driven FDD. Existing literature provides promising methods and frameworks for implementing data-

driven fault detection and fault diagnosis, step by step from collecting data to detecting anomaly to isolating 

root causes. Data-driven fault prognosis remains to be further developed. In terms of system studied, many 

studies exist that apply data-driven FDD methods to typical building HVAC systems (e.g., AHU-VAV and 

chiller). However, most of the studies are based on simulated or lab experiment data. Many types of evalua-

tion metrics have been reported in the literature which are sufficient for data-driven FDD performance eval-

uation. Overall speaking, existing literature has laid a solid foundation to demonstrate the feasibility and 

benefit of using data-driven FDD. Yet significant challenges still remain for a wide market adoption of data-

driven FDD methods. These challenges include real time and real building implementation that is subject to 

data uncertainties; method performance benchmarking in real buildings; fault impact analysis; method scala-

bility and transferability; fault interpretation; cyber security and data privacy; and user experience. It is our 

hope that this review would provide insights and directions for practitioners and researchers to develop the 

next generation data-driven FDD products. 
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7. Building-2-Grid 

• Understand the different Building-2-Grid services, strategies and applications. 

• Identify what components and systems play a role in Building-2-Grid services. 

• Gain an insight into the current deployment and readiness of Building-2-Grid services and tech-
nologies. 

• Learn about the challenges in the development of Building-2-Grid services. 

• Understand the difference between direct and indirect control of flexible assets 

7.0 Introduction 

The transition from fossil fuels to fluctuating renewable energy sources requires a drastic change in the 

operation of the current energy systems and energy grids. Simulation studies and demonstration projects 

have shown the potential of demand-side management (i.e., the capacity to adjust dynamic energy loads) to 

alleviate the challenges in the energy infrastructure, e.g., voltage and frequency stability in electrical grids, 

peak power limitation and local bottleneck effect in thermal and electrical grids, high costs and CO2-intensive 

operation of peak power generators, negative electricity prices, costly reinforcement or extension of the net-

works, faster deterioration of hydronic networks caused by the unstable operation. 

 

Building energy flexibility is the ability of a building to adapt or modulate its short-term (a few hours or a 

couple of days) energy demand and energy generation profile according to climate conditions, user needs 

and energy network requirements without jeopardizing the technical capabilities of the building systems and 

the comfort of occupants . Building energy flexibility strategies (also known as demand response) thus allow 

load control/modulation to provide building-to-grid (B2G) services to the local energy grids. These B2G ser-

vices support the matching of the energy demand profile with the energy supply profile in smart grids domi-

nated by RES, but also help to tackle the aforementioned grid challenges and thus contribute to reaching the 

sustainability goals of the building sector (see Fig. 7.1). 

 

This chapter aims to provide a rapid overview of the B2G services, including their potential and challenges, 

and give some insights on the latest pilot projects applying building energy flexibility strategies. 
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Figure 7-1. The establishment of B2G services in energy-efficient smart building prosumers (supplying energy locally 

with integrated RES) interacting with smart energy grids to support a more sustainable building stock and overall energy 

system. Source: Reproduced from Johra., 2023. 

 

7.1 B2G Services and Strategies 

There are two main categories for the demand response control strategy of energy end-users: direct control 

and indirect control (also known as incentive-based or explicit control). Direct control strategies regulate the 

distributed energy end-user systems via a direct two-way communication link: the devices are directly told 

when and what power to use according to technical limitations and comfort and service levels pre-set by the 

occupants or building owners. Indirect control strategies influence the distributed energy end-user systems 

via an incentive or penalty signal that the aggregators or the grid operators broadcasts and to which the local 

controllers of end-user systems react (Halvgaard et al., 2013, Madsen et al., 2015). This incentive or penalty 

signal could be, e.g., an energy spot price, an energy price forecast, or a CO2 intensity of the energy pro-

duction in the grid. Each building and end-user integrate this incentive signal together with a weather forecast, 

occupancy prediction and estimate of what energy demand modulation is possible and adjust their building 

system operation to minimize total energy costs or CO2 emissions over a prediction and control horizon of a 

few hours or days (Paterakis et al., 2017, Halvgaard et al., 2012). This would result, for instance, in electric 

vehicles and domestic hot water storage tanks being turned off during the high energy price periods to de-

crease load demand and, on the contrary, be activated and store energy during the low energy price periods 

to increase load demand. 
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The following figure (Fig. 7.2) illustrates some common demand response strategies that can be activated 

depending on the grid's challenges and needs. 

 

 

 

Figure 7-2. Illustration of different demand-side management / demand response / building energy flexibility actions. Peak 
shaving: Reduction of the energy peak demand. Load (time) shifting: Anticipate or delay the energy use. Valley filling: 
Increase energy use over a short period of time when the energy demand is lower than the energy production; this energy 
can be stored for a predicted period of energy shortage or peak shaving need. Valley filling can also be the result of a 
rebound effect following peak shaving. Source: Modified from Andersen et al., 2019. 

As illustrated in Figure 7.3, the demand response potential of a building depends on the individual energy 

flexibility capacity of various components. Among these components, certain systems have the potential to 

perform load shifting (heating system, ventilation, electric vehicles, certain white goods and appliances), 

while other elements provide direct energy storage (electric vehicles, photovoltaic batteries, building enve-

lope and thermal mass, hot water storage tank), or energy generation (heat pump, photovoltaic panels). 
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Figure 7-3. Components of a grid-interactive building that can perform demand response. Source: Reproduced from Li 
et al., 2021. 

In order to effectively perform the aforementioned flexible load modulations by direct control, it is necessary 

to ensure proper two-way communication between the grid-interactive smart building prosumers (using, stor-

ing and/or supplying energy), the smart energy grids (local distribution grids and larger-scale transmission 

networks of electricity, gas, district heating/cooling), and the building occupants, owners and managers. The 

interaction between the building systems, appliances and the grid is facilitated by the adoption of appropriate 

smart home automation systems and dedicated smartphone apps. 

 

In the case of demand response with indirect control, it is sufficient to only broadcast the incentive signal 

(typically, a price signal). For instance, in the Smart Energy Operating System setup (Madina et al., 2019), 

the price signal sent to the end-user is made of composite price signals, where each element of the final 

price is obtained by a controller solving specific grid challenges (see Section 5.4). 

 

B2G services are fundamentally linked to the establishment of data-driven and data-sharing smart buildings. 

Indeed, to achieve any kind of direct or indirect demand response control, buildings need to provide some 

monitoring data to certain actors of the smart grids and energy markets. Moreover, they should be able to 

receive and interpret smart grids’ signals to automatically perform adjustments to their energy profile via 

smart home technologies or building automation systems (BAS). Finally, to reward B2G services, the contin-

uous efficiency and effectiveness assessment of the latter requires data-driven methods to generate building 

energy demand profile baselines (reference scenarios without demand response) and key performance in-

dicators of energy flexibility computed with building operational data (Li et al., 2023). 

7.2 Technology Readiness and Potential 

With the current and future challenges of increasing energy demand and energy prices, energy supply scar-

city and instability, service electrification, global warming, and the rapid expansion of intermittent renewable 

power generation, demand response and energy flexibility strategies are attracting more and more attention 

and gaining traction within the scientific community and the general public, businesses and policymakers. 
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The great potential of buildings to provide B2G services by means of demand response has been clearly 

identified by many research groups (Reynders et al., 2013; Le Dreau et al., 2016, Samad et al., 2016; Johra 

et al., 2018). For example, it has been estimated that efficient and flexible residential and commercial build-

ings providing B2G services could lead to a $100-$200 billion cost saving and a 6% reduction in US power 

sector emissions from by 2030 (Satchwell et al., 2021). Real-life large-scale pilot projects reported heating 

peak load reductions of 40-65% achieved by throttling heat pumps in a cluster of buildings (Müller and Jan-

sen, 2019). If the current global demand response capacity at times of the highest flexibility needs for the 

building stocks is only 1% of the total electric power supply, it is estimated to reach 10% of the latter by 2030 

(IEA Tacking report - Demand Response, September 2022). 

 

In recent years, several large international projects, such as the ones under the umbrella of the IEA EBC 

projects Annex 67 (www.annex67.org), Annex 81 (https://annex81.iea-ebc.org), Annex 82 (https://an-

nex82.iea-ebc.org), and Annex 84 (https://annex84.iea-ebc.org) strived to provide insight on the various as-

pects of B2G services and building energy flexibility, identify study cases, suitable assessment frameworks, 

tools and KPIs, determine stakeholders' interactions, business models, and analyse legislative challenges, 

technological barriers and acceptability from building occupants and owners (Jensen et al., 2017; Li et al., 

2021; Li et al., 2023). 

 

Currently, the different B2G service and demand response solutions have a technology readiness level (TRL) 

of 5 to 8. The different technologies for B2G services are mature, several pilot projects have been completed, 

and a certain number of commercial applications are now being deployed. With the current energy crisis and 

the forecasted risks of grid blackouts in several countries, there is no doubt that B2G services and demand 

response strategies will be massively deployed in the upcoming years. However, significant effort must be 

made to identify adequate business models and legislative frameworks for B2G services. 

 

Flexibility services can be provided at multiple levels of aggregation: device level, zone level, building level, 

and building cluster level. The demand flexibility can be employed to meet specific local objectives, such as 

generating energy efficiency and capacity constraints or improving the self-supply from on-site or local RES. 

At the distribution grid level, these objectives can be broadened to manage congestion and resolve voltage 

issues in the electric grid with increasing intermittent renewable energy (Biegel et al., 2014; Kazmi et al., 

2019; Wrinch et al., 2012). Global objectives can also be met, such as the reduction of the national peak 

power demand during critical days/hours to avoid blackouts and curtailments of a certain section of an elec-

trical grid because of insufficient peak supply capacities. The reduction of peak power demand and the con-

trollability of the demand greatly improves the CO2 intensity of the entire energy mix by promoting the viability 

of intermittent renewable energy sources and limiting the need to build, maintain, start and operate fossil 

fuel-based peak units. 

 

For district heating and cooling systems, B2G services can improve the temperature difference between the 

supply and return lines of the network (and thus improve the energy efficiency of the system), reduce peak 

loads and network congestion (which typically lead to unfair heat distribution and service reliability) (Van 

Oevelen et al., 2021). 

 

The flexibility from many households or buildings can be aggregated for participation in energy markets, e.g., 

on the day-ahead or imbalance electricity markets, or for provision of ancillary services, e.g., primary, sec-

ondary or tertiary frequency regulation by aggregating multiple resistive heating elements (Balint and Kazmi, 

2019; Kazmi et al., 2019; Van Oevelen et al., 2021). 

 

Aggregators control (directly or indirectly) a portfolio of distributed flexible energy consumers, producers and 

storage systems. The former can thus utilize this flexibility to participate in the electricity or heat markets for 

primary, secondary, and tertiary reserves (see Figure 7.4 and Figure 7.5). 

 

http://www.annex67.org/
https://annex81.iea-ebc.org/
https://annex82.iea-ebc.org/
https://annex82.iea-ebc.org/
https://annex84.iea-ebc.org/
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Figure 7-4. Integration of the B2G services/demand response/building energy flexibility in the smart electrical grid system 
with market mechanisms. The dashed purple arrows represent the communication interactions between the different 
actors of the electrical system: Distributed demand (residential buildings, office buildings, commercial buildings, charging 
stations for electric vehicles, small industries), large centralized demand (large industrial facilities), distributed production 
(wind farms, solar farms, combined heat and power plants, renewable energy sources integrated into buildings), large 
centralized production (nuclear plants, hydro-electric dams, gas-fired power plants). Source: Modified from Biegel et al., 
2016. 

 

 

Figure 7-5. Integration of the B2G/demand response/building energy flexibility in the district heating network system with 
market and contract mechanisms. The dashed purple arrows represent the communication interactions between the 
different actors of the district heating system: Distributed demand (residential buildings, office buildings, commercial 
buildings, small industries), large centralized demand (large industrial facilities, large buildings), distributed production 
and waste heat (solar collectors, combined heat and power plants, booster heat pump stations, waste heat from industrial 
processes). 
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Direct-control demand response is usually organized around a flexibility market, such as the one hosted by 

the flexibility clearing house ”FLECH” (Müller and Jansen, 2019). On such a flexibility market platform, the 

processes of opening a market offer, submitting bids, and clearing a market occurs before the delivery of 

the actual B2G service, i.e., the demand response event. The flexibility market is the intermediary between 

the sellers (single large energy end-users or aggregators of distributed energy end-users) and the buyers 

(DSOs and TSOs) of energy flexibility (see Figure 7.6). 

 

 

Figure 7-6. Market-based direct control for demand response and B2G services with flexibility buyers (DSOs and TSOs) 
and flexibility sellers (aggregators of distributed energy end-users and productions, large energy end-users and produc-
tions). The aggregators collect the data from the distributed energy end-users and distributed energy producers to esti-
mate their portfolio's flexibility and bid on the markets that are opened by the potential buyers or offer their flexibility 
products (load shifting events) on the flexibility market. If a buyer accepts and activates a bid, the control signal for direct 
control is sent to the seller, and the corresponding market is closed/cleared. Source: Modified from Müller and Jansen, 
2019. 

Similarly to the wholesale energy markets, this flexibility trading at the wholesale level may be financially 

viable for aggregators and large industries. However, for residential and small commercial participants, P2P 

(peer-to-peer) blockchain-based approaches are emerging as a solution for decentralized energy flexibility 

trading via the realization of smart contracts by a crowd of small prosumers (Wu et al., 2022). 

 

P2P energy trading marketplaces and P2P energy flexibility marketplaces are starting to be deployed. For 

example, the Suncontract platform is fully operational in Slovenia and deployed in several energy communi-

ties, such as the renewable energy self-sufficient community of Zavrate (Suncontract, 2022). While trials in 

Western Australia experienced challenges with value capture, the technical feasibility of P2P energy trading 

was successfully demonstrated in the White Gum Valley trial involving 24 apartments (Western Power, 2022). 

Extending energy trading to incorporate flexibility trading has shown benefits for grid decentralisation, man-

aging loads and near real-time settlement of demand response, as demonstrated in an Italian pilot project in 

collaboration with a DSO (Glavan et al., 2019). 
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7.3 The Smart Energy Operating System: example of a data-driven 
B2G service framework 

According to the scientific literature on the topic and the experience from pilot projects (e.g., Center Denmark: 

smart energy hub), most of the building-related demand response methodologies are based on indirect con-

trol schemas: typically price-based control. The Smart Energy Operating System is a framework for hierar-

chical modelling, forecasting and market operations (see Figure 7.7). At the top level, it consists of conven-

tional markets, but at the lower levels, it employs methods combining direct and indirect control. In addition, 

the Smart Energy Operating System is designed as a hierarchical system for data handling and an infor-

mation exchange framework. It thus ensures a unique coherence across all relevant spatial and temporal 

aggregation scales, with a focus on multi-objective criteria like energy efficiency and flexibility. 

 

 

Figure 7-7. The Smart Energy OS. 

 

The Smart Energy Operating System relies on the Minimal Interoperability Mechanisms (MIMs) roadmap, 

which aims at providing building blocks for an efficient digitalization of society. It provides functionalities 

across different but related domains like energy, transportation and water. Its intent is not to replace existing 

market mechanisms where end-users bid at the appropriate markets. On the contrary, it reinforces the latter 

with a MIMs-compliant framework for an efficient scale-up of local flexibility concepts (e.g., large-scale inte-

gration of wind and solar energy) while supporting local initiatives like district heating networks and energy 

communities. 

 

The Smart Energy Operating System offers unique frameworks and data spaces for the exchange of infor-

mation between all relevant aggregation levels that have been established. More specifically, it contains a 

framework of spatial and temporal hierarchies for ensuring that forecasts (e.g., wind power generation fore-

casts) are coherent across all relevant aggregation levels (Sørensen et al., 2023). The Smart Energy Oper-

ating System focuses on the integrity, privacy (including GDPR), transparency, security and reliability of the 
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handled data. In this framework, the computations are done at many levels of the system hierarchy. The 

Smart Energy Operating System for Power Systems, Home Energy Management Systems (HEMS) and 

Home Management Information Systems (HMIS) can be used to provide information about the aggregated 

flexibility which can be offered from a particular building or an entire energy communities. 

 

Energy efficiency and flexibility of residential buildings are important examples where design-specific data 

exchange metrics have been adopted. A key element of the Smart Energy Operating System data exchange 

framework between energy end-users and grid operators is the Flexibility Function (see Figure 5-5, Junker 

et al., 2018). The Flexibility Function is one of the fundamental MIMs-related features and represents a con-

densed data exchange framework which is used to create a coherent link between the low-level physics (e.g., 

the thermal inertia of the buildings) and high-level electricity markets. Moreover, the Flexibility Function con-

tains all relevant information for the balance responsible parties and the distribution grid operators, while 

preserving privacy. The Flexibility Function is also used for sector coupling and for hybrid energy systems, 

e.g., buildings with both district heating connection and heat pumps. Finally, the Flexibility Function can be 

applied at all aggregation levels, e.g., for the appliance, the building, the district, the city, or larger regions. 

The integrated standard Flexibility Function for activating flexibility at all levels and across all relevant energy 

vectors implies that flexibility and interoperability can be obtained everywhere using low-cost technologies. 

The simplicity of broadcasting price signals for activating demand-response entails that all appliances can 

contribute to unlocking the needed flexibility at the relevant spatial and temporal coordinates. At the same 

time, the end-user can easily set up local preferences in a weighted combination of costs, emissions and 

energy efficiency goals/focus. The overall simplicity of the concepts ensures fast adaptation and stimulates 

an effective scaling-up of flexibility and demand response technologies on the market. 

 

Another key element of the Smart Energy Operating System is its grey-box modelling approach (introduced 

in Section 4.3.1.). Grey-box models have low computation needs and allow for real-time data from sensors 

and measurements to improve the forecast and control performance.  

 

The Smart Energy Operating System concept has been demonstrated on a large scale in the ebalanceplus 

projects– Smart energy flexibility for distribution grids and SmartNet projects (EU H2020). 

7.4 Commercial Products, Services and Deployment 

Over the last few years, an ever-increasing number of smart distributed energy resources and connected 

devices in buildings have been deployed and have the potential for significant aggregated demand response 

for load shifting and peak demand shedding. This building demand response capacity could reach 250 GW 

globally by 2030, in addition to the 50 GW of flexibility capacity from the smart charging of electric vehicles. 

However promising, the deployment growth is too slow to meet the sustainability goals of the green energy 

transition (IEA Tracking report - Demand Response, 2022). Nonetheless, the current energy crisis and 

threats of local blackouts and grid curtailments are opportunities to accelerate policy frameworks for demand-

side flexibility and incentivise stakeholders to significantly speed up the systematic deployment of B2G tech-

nologies and services. This section aims at reporting the recent advances in pilot projects and commercially 

available B2G services providing demand response. 

 

In France, the demand-side flexibility market is rapidly increasing, with selected bids totalling 2.4GW in 2022 

(IEA Tacking report - Demand Response, 2022). As a response to the risk of electric power supply shortage 

during the winter of 2022, France has launched a public awareness program that indicates to the general 

public what regions of France are under imminent threat of electric grid blackout. Similar to storm or heatwave 

forecast alerts, this blackout risk mapping aims at encouraging the people of the zone of concern to lower 

their electricity usage during critical periods to avoid selective power cuts (www.monecowatt.fr). In addition, 

http://www.monecowatt.fr/
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4.3 million clients have subscribed to a low-tariff/high-tariff program for the automated control of their domes-

tic hot water production with an electric boiler. This tariff structure can also be used to perform direct control 

(curtailment) of sanitary hot water boilers to shed electric peak demand in critical zones. Load shedding of 

up to 2.5 GW could thus be achieved. The French DSO Voltalis got contracted by the French government to 

provide a 721 MW of load-shedding capacity from residential and commercial buildings (below 1 MW) only13. 

 

In the United Kingdom, 528 MW of one-year-ahead auction demand-side capacity and 1 GW of four-year-

ahead auction demand-side capacity have been secured in 2022 [IEA Tracking report - Demand Response, 

2022). British private energy providers, such as Octopus Energy Ltd (https://octopus.energy/), are popular-

izing variable electricity spot prices for households combined with smartphone apps designed to perform 

indirect demand response to alert and incentivise them to use more electricity and charge their electric vehi-

cles during low-price periods, and use less electricity during high-price periods. Large-scale coordinated load-

shedding experiments by these energy providers have shown that the UK’s peak energy demand could be 

lowered by 10% when residential buildings perform demand response. Direct control of smart home appli-

ances and smart EV charging should be deployed in the near future. 

 

In Belgium, in 2021, 8% of the 4.45 GW four-year-ahead flexible capacity auction is covered by demand-side 

management and storage (IEA Tracking report - Demand Response, 2022). 

 

In Denmark, the electricity spot price on the NorthPool market varies a lot. The adoption of smart variable 

tariffs by the general population and the electricity price forecasting displayed in newspapers next to the 

weather forecast have induced noticeable changes in energy habits. A shift in the time of energy use from 

peak hours to night hours has been observed for laundry, dishwasher and EV charging. 

 

In central Europe, Lerta (https://lerta.energy/en/for-business/) is a capacity aggregator combining the de-

mand flexibility of hundreds of energy end-users into a virtual power plant spanning over Poland, Hungary, 

Czech Republic and Romania. The clients are incentivised via variable spot prices and nudges for peak 

power shedding, while the resulting demand flexibility is traded on the capacity market. 

 

At a global scale, it is estimated that commercial and residential energy storage systems represent 3.7 GW 

in 2020 and could reach 510 GW in 2030. Moreover, smart home EV chargers should be massively deployed 

in the upcoming years, going from 117 000 in 2020 to 28.7 million in 2030 (IEA Tracking report - Demand 

Response, 2022). 

 

A list of recent B2G pilot projects is given in Table 7.1. 

 

 
13 URL: group.voltalis.com/en/empty/a-721-mw-major-contcat-to-voltalisdemand-response-6251 

https://octopus.energy/
https://lerta.energy/en/for-business/
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Table 7-1. Summary of B2G real-life applications. 

Ref Name Country Customer type Component delivering B2G service B2G strategy B2G control strategy Link 

1 StryDinVarmePumpe DK Domestic HP 
Network Peak Shaving 
and Load modulation 

Direct and Indirect attached PDF 

2 
Customer-Led Network 
Revolution project 

UK Mix * HP, Home appliances, EVs, PV Network Peak Shaving Direct and Indirect http://www.networkrevolution.co.uk/ 

3 
GridWise Olympic Pen-
insula Demonstration 

USA Mix 
All domestic and non-domestic 
loads 

Network Peak Shaving Direct and Indirect 
https://www.pnnl.gov/projects/transactive-systems-pro-
gram/gridwise-olympic-peninsula-demonstration  

4 TotalFlex DK Mix HP, Home appliances, Evs 
Grid and end-customers 
requirements 

Direct and Indirect https://totalflex.dk/In%20English/ 

5 iPower DK Mix 
HP, White appliances at homes and 
stores 

Mix Direct and Indirect https://ipower-net.weebly.com/ 

6 
Greater Manchester 
Smart Energy project 

UK Domestic HP Network Peak Shaving Direct and Indirect https://gmgreencity.com/smart-energy-team/ 

7 EnergyLab Nordhavn DK Domestic HVAC Network Peak Shaving Direct and Indirect http://www.energylabnordhavn.com/ 

8 eFlex DK Domestic HP and other home appliances Network Peak Shaving Direct and Indirect 
https://www.slideshare.net/JonathanDybkj/the-eflex-pro-
jectlow 

9 LINEAR BL Domestic 
Home appliances, EVs, PV, Batter-
ies, TES 

Mix Direct and Indirect http://www.s3c-project.eu/News/89/LINEAR.html 

10 READY  DK Domestic HP Network Peak Shaving Direct 
http://www.smartcity-ready.eu/wp-content/up-
loads/2021/02/Final-Publishable-Summary-Report-
READY_v2.pdf 

11 
Your Energy Moment 
Zwolle  

NL Domestic Home appliances Network Peak Shaving Indirect 
https://www.rvo.nl/sites/de-
fault/files/2013/09/Jouw%20Energie%20Mo-
ment%20UK.pdf 

12 EcoGrid DK Domestic HP Network Peak Shaving Direct and Indirect http://www.eu-ecogrid.net/ 

13 EcoGrid 2.0  DK Domestic HP Mix Direct and Indirect http://www.ecogrid.dk/en/home_uk/#hvad3 

14 Fort Collins RDSI  USA Mix Mix Mix Direct and Indirect https://www.fcgov.com/fortzed/ 

15 Peak Smart AU Domestic 
Reverse cycle airconditioning (air to 
air heatpumps) 

Network peak shaving/ 
emergency response 

Direct 
https://www.energex.com.au/home/control-your-en-
ergy/cashback-rewards-program/air-conditioning-rewards  

16 DRH AU Domestic HP, PV, thermal storage 
Peak shaving and load 
shifting 

Direct and Indirect http://desertrosehouse.com.au/ 

17 CalFlexHub U.S. Mix Mix Mix Indirect https://calflexhub.lbl.gov/  

18 
FED Flexible Energy 
Denmark 

DK Mix Mix 
Load modulation for 
cost and CO2 savings 

Indirect https://www.flexibleenergydenmark.dk/ 

19 CITIES/Novasol DK Domestic Heat pumps  Indirect Indirect 
http://smart-cities-centre.org/dynamic-co2-based-control-
of-summerhouse-swimming-pool-heating/  

20 CITIES DK Domestic Heat pumps  Mix Indirect 
http://smart-cities-centre.org/wp-content/uploads/Con-
trol-of-heat-pumps.pdf 

21 Uni-lab.dk/Industrial DK Industrial Cooling house 
Load modulation for 
cost savings 

Indirect 
https://www.uni-lab.dk/en/living-labs/konstant-living-lab-
power-grid-in-eastern-jutland/ 

*domestic and non-domestic

https://www.pnnl.gov/projects/transactive-systems-program/gridwise-olympic-peninsula-demonstration
https://www.pnnl.gov/projects/transactive-systems-program/gridwise-olympic-peninsula-demonstration
http://desertrosehouse.com.au/
https://calflexhub.lbl.gov/
http://smart-cities-centre.org/dynamic-co2-based-control-of-summerhouse-swimming-pool-heating/
http://smart-cities-centre.org/dynamic-co2-based-control-of-summerhouse-swimming-pool-heating/
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7.5 Barriers and Challenges to Adoption 

Although demand-side management and building demand response are gaining momentum in the energy 

system community and the general public, pilot and demonstration projects of direct control demand re-

sponse are not yet followed by large-scale implementations and diffusion into the economic rationales and 

habits of the different stakeholders. The main current barriers and sociotechnical challenges to the adoption 

of these B2G services are summarized hereafter: 

 

• Regulatory challenges: In most countries, the current legislative framework completely hinders the 

large-scale deployment of building demand response. The rules of the energy markets and grid reg-

ulation are either too rigid, inadequate or simply inexistent regarding B2G services and the proper 

financial incentives for the participation of distributed demand response resources in the energy mar-

ket. In some energy markets, the aggregation of consumers by a third-party company is illegal or 

practically infeasible. Moreover, neighbouring regions interconnected to the same energy grid often 

have different regulations, which make it difficult for third-party aggregators to provide large-scale 

energy services (Paterakis et al., 2017). These regulatory challenges prohibit proper business de-

velopment and optimisation of building systems towards the maximisation of B2G service capacity. 

 

• Technical challenges: The development of B2G services faces certain structural barriers, i.e., the 

need to deploy a significant amount of metering, control and two-way communication equipment at 

the different energy end-users, prosumers and energy transmission systems in order to create a 

large-scale smart energy grid. Telemetry equipment has costs that tend to increase with the required 

sampling rate, response time and reliability. However, building demand response needs a rather high 

response speed and sampling rate to provide certain grid services, especially for electric grids. An-

other challenge regarding the deployment of such metering equipment is the clear lack of standard-

ization and DSM-oriented regulation for two-way communication protocols in building management 

systems (BMS) and building automation systems (BAS). Furthermore, many buildings are already 

equipped with inadequate legacy BAS, which will not be replaced shortly. This largely hinders the 

compatibility and interoperability of the different DR and B2G technologies, often leading to inaccu-

rate and incomplete data collection, poor responsiveness, and unreliable information flow between 

the energy end-users, the aggregators and the DSOs, flexibility market or centralized controller. 

Many pilot projects reported failures in the chain of communication which can result in a significant 

value loss in the case of large-scale commercial deployment. There is thus a need to develop scal-

able and adaptive data treatment methods to pre-process and combine the heterogeneous data 

swamp from multiple buildings into useful information for the B2G service aggregators or the energy 

flexibility markets (Paterakis et al., 2017; Olgyay et al., 2020). 

 

Finally, there is currently no consensus on how to assess B2G services and energy flexibility effec-

tiveness. Many different Key Performance Indicators (KPIs) have been developed by the scientific 

community. Most of them are based on the comparison between a reference or baseline energy 

demand profile and the energy demand profile of the building when performing demand response. 

The quality of the energy flexibility assessment is thus directly dependent on the quality of the energy 

demand baseline estimate. However, there is no standard way to determine the customer baseline. 

A flawed methodology could allow participants to an energy flexibility market to change their base-

lines in order to get paid without providing real load reductions, which would undermine the economic 

reliability of the entire market. Moreover, the current KPIs look at many different aspects of B2G 

services and energy flexibility. Consequently, there is currently no suitable and transparent tools in 
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order to evaluate, measure and verify the B2G service and demand response effectiveness of build-

ings (Paterakis et al., 2017; Li et al., 2021; Li et al., 2023). 

 

• Business and market challenges: B2G services suffer from significant economic barriers, in par-

ticular the lack of clarity around economic benefits and programs for demand response (with direct 

or indirect control from the grids) on multiple small sources of flexibility and energy communities. If 

business models for B2G services are relatively well-defined for utilities and grid operators (DSOs, 

TSOs), the incentive is much less compelling for ESCOs, aggregators and households. Part of the 

savings generated by the DSOs and TSOs must be redistributed to the different energy end-users 

and the small actors to incentivise them to provide data and perform energy flexibility actions that 

optimize grid operation and efficiency. Nonetheless, there are different views regarding how DR pro-

viders should be compensated for their B2G services. Some advocate that the DR providers should 

be compensated below the energy market price because the former already benefit from cost sav-

ings due to the load shifting towards low energy price periods. Others argue that DR providers should 

be compensated at the full energy price of the market, similarly to the generators. However, not 

purchasing and not using energy is not the same as supplying it. Lastly, some would invoke that DR 

creates positive sustainable externalities and should thus be rewarded higher than the market prices 

(Paterakis et al., 2017; Olgyay et al., 2020). 

 

The absence of standard methodologies to study the cost-effectiveness and GHG emission reduction 

of demand response actions hinders the decisions to perform investments. The provision of B2G 

services, therefore, becomes an additional objective in an already very complex multi-objective build-

ing design accounting for investment costs, life-cycle costs, energy costs, environmental impacts, 

societal impacts and resilience of services. Building owners cannot quantify the indirect value 

streams of demand-side management. Building energy flexibility is thus not usually included in the 

financing scheme of districts due to the lack of certainty in revenues and program availability. More 

generally, there is a lack of large assessments of B2G potential at the city-scale or national level. 

 

Customer segmentation is another issue in the deployment of B2G services. Different programs and 

tariff structures have to be tailored for the different types of customers with various energy practices, 

comfort requirements, responsiveness and flexibility potential. In the case of buildings with multiple 

owners, the distribution of costs and benefits for shared systems performing B2G services, together 

with the liability of equipment failure, cannot always be clearly defined. The retributions of third par-

ties providing forecasting, assessment, optimization, and verification to aggregators and energy end-

users have yet to be defined (Paterakis et al., 2017; Olgyay et al., 2020). 

 

In the case of tariff-driven control of demand response, accurate dynamic tariffs reflecting the actual 

time-varying costs for the DSOs and TSOs are important. However, while the spot energy prices can 

be very dynamic on the wholesale market, the final price to the customers often comprises a large 

share of fixed costs, constant taxes and flat fees, therefore reducing economic incentive opportunities 

for demand response. The Smart Energy Operating System contains controllers which can establish 

dynamic tariffs constructed such that the tariff-related costs are large enough to solve the issues of 

the grid and account for energy losses (Dognini et al., 2022). 

 

In addition, several criteria of a B2G service market need to be determined and standardized: Mini-

mum resource bid size, entrance fees, aggregation mechanism for multiple small energy end-users, 

geographic boundaries of aggregation, number, frequency and timing of DR event calls, load recov-

ery period, response time, fixed trading charges. Moreover, the roles and responsibilities of DR ag-

gregators remain unclear. 
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Finally, the interest and views of the different actors and stakeholders in DSM are not necessarily 

well aligned, which impairs the proper business development of the latter. Most of the DR resources 

are connected to distribution networks. A good collaboration between the TSOs and DSOs is thus 

crucial. The latter use DR to tackle operational constraints on their grids, while energy retailers might 

use DR to mitigate high spot market prices. The flexible behaviour of certain energy end-users may 

induce lower energy rates which would then benefit all customers, even the ones not providing DR. 

Besides, DR might severely damage the business model of intermediate energy generators that are 

currently responsible for the regulation, load following and ramping. This could lead to the decom-

missioning of such power plants which, however, provide certain ancillary services, such as voltage 

support and system restoration, that cannot necessarily be provided by DR of the energy end-users 

in electric grids (Paterakis et al., 2017; Olgyay et al., 2020). 

 

• Human challenges: The development of a structured energy flexibility market requires the different 

actors to become more familiar with such concepts. For instance, district heating utility companies 

have very little knowledge about the future problems that demand response can solve (Joh ansen 

and Johra, 2022). Significant efforts for the information and education of the different stakeholders 

is thus necessary. The DR and B2G service concepts must be introduced in a simple way and build 

on existing habits. Tailored education programs should target local communities and municipalities 

and explain the importance of DR to help with the resilience and sustainability of the local energy 

grids and how each participant can benefit from it and be rewarded for participating in it. One of the 

key challenges is that many buildings have multiple owners and stakeholders. It is thus very difficult 

to align their cost/benefit plan for all of them. In addition, many customers are reluctant to change 

their habits and energy usage practices because minimizing their energy bills or contributing to a 

sustainable system might not be their primary concern. Unlike the energy suppliers, energy end-

users do not necessarily follow an economically rational behaviour, which limits the predictability of 

their effective involvement in B2G service programs. To reach a high responsiveness, engagement 

and acceptability of energy end-users in buildings, an appropriate communication approach must be 

taken to transmit DR information, e.g., smart home automation dashboard or smartphone apps. Spe-

cific nudging, incentive and feedback systems can be combined with transparent information to the 

energy end-users so that they can understand, choose and follow a tailored B2G service pro-

gram/contract without being overwhelmed and confused by technical jargon and unclear offers from 

multiple parties (Paterakis et al., 2017; Olgyay et al., 2020). 

 

• Cybersecurity: The multiplication of smart home automation equipment and wireless Internet of the 

Things devices, together with the ever-increasing complexification of network technologies in build-

ing automation systems creates concerning risks and vulnerabilities to malicious cyber attackers. 

Thus, securing the energy management systems of communities and smart grids from cyberattacks 

poses significant challenges. Building owners and occupants are also often concerned about the 

risks of personal information leaks or the loss of control on the building automation system, which 

could induce financial losses and safety and security issues (Paterakis et al., 2017). Together with a 

reinforcement of the cybersecurity technology and the legal framework, some technical innovations 

allowing decentralised control without sharing private user data are active research topics (Li et al., 

2021). 

 

• Research and development challenges: The R&D in the field of B2G services now needs large-

scale pilot studies. However, these require a long preparatory phase which does not necessarily fit 

into the short-lived research projects that are usually funded. The support of DSOs to launch and 

extend these pilot projects is insufficient. This is probably due to the core of their energy trading 

business being, at the moment, too far from the different B2G services. Future B2G service pilot 

projects should include a large portfolio of energy end-users and a strong partnership between 

DSOs, TSOs, ESCOs, aggregators, curtailment service providers and other third-party actors 
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[Paterakis et al., 2017, Olgyay et al., 2020]. Finally, the reproducibility and transferability of B2G 

service studies must be improved. In particular, there is a severe lack of open datasets from buildings 

performing demand response. Most available datasets are of insufficient quality to be used by other 

researchers (Li et al., 2023). 

7.6 Conclusion and Outlook 

B2G services and technologies have a large potential to significantly improve the energy grids’ sustainability 

and help tackle current energy and environmental challenges, solve local congestion and stability problems 

and mitigate the risks of blackouts on different electric grids. If the research and development in the field of 

building energy flexibility and demand response has been thriving over the last few years, the large-scale 

deployment of B2G services faces complex socio-technical challenges. Although load-shifting incentivizing 

programs based on variable energy spot prices are slowly diffusing in energy-related businesses and in the 

general population, significant efforts are required to set structured markets for demand response and B2G 

services. The business models and market perspectives around B2G services are still unclear for many 

stakeholders because of, among other things, a lack of appropriate legislative framework and standardized 

methods to assess the potential, effectiveness and benefits of demand response. In addition to addressing 

the aforementioned challenges, future B2G service R&D activities must include large-scale pilot projects to 

demonstrate the feasibility, cost-efficiency and acceptability of DR innovative business models and smart 

building technologies. These projects must include close cooperation between TSOs, DSOs, energy end-

users, building occupants, building owners, building managers, architects, planners, ESCOs and third-party 

companies. The coupling and synergy of different local energy grids, neighbouring energy prosumers and 

transportation facilities should be at the core of the design and planning process of future energy communities 

and smart buildings. 
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8 Case Studies Collection 

• Overview of the methodology for collecting Case Study exemplars within Annex 81 

• Provide stakeholders’s perspective on lessons learnt from data-driven technology implementa-
tion 

8.1 Introduction 

The recent revolution in digital technologies and cyber-physical systems enables advanced control and op-

eration of building services, unlocking the potential to reduce costs and improve energy efficiency. Edge 

computing and the Internet of Things (IoT) have allowed access to more diverse data and unparalleled com-

puting capabilities at a low cost. Artificial intelligence and data analytics tools facilitated a new breed of data-

centric approaches to deliver comprehensive energy performance assessment and predictive asset man-

agement — these are discussed to some extent in the previous chapters. Collectively these data-driven 

services enable new business models and support the development of a sharing economy, using platforms 

to connect users and data-driven services providers. 

 

Progress in the digitalisation of building services has been slow, and the application of digitalisation for im-

proving energy efficiency in buildings and unlocking value has yet to reach its full potential. Recent advance-

ments in energy efficiency software and technological solutions have been successfully trialled, opening up 

exciting avenues for the sector. However, such solutions have been chiefly integrated into experimental pro-

jects and are not mainstream in the current state of practice. 

 

It is familiar with technological innovations that hype usually raises expectations to unrealistic levels. While 

such hype might drive early adopters and researchers, actual adoption at scale is only possible when a clear 

value proposition is demonstrated in practice. The transition from technology development to implementation 

in the real world needs to account for stakeholder needs and understand what problem(s) a technology 

addresses. A stakeholder discussion session was organised as part of the activities undertaken within Annex 

81 to discuss the opportunities and barriers to adopting such technologies. The discussion suggested that 

technology availability is not the main barrier but how this technology is integrated with the current state of 

practice and addresses actual end-user needs. The panel observed the limited availability of a) data and 

case study exemplars, ontologies and standards to support systematic pathways on real-world smart tech-

nology implementation, b) business cases and good economic incentives to enable clear implementation 

pathways, and c) the necessary skills to address system integration and interoperability challenges and de-

velop solutions that align with existing processes and address stakeholder needs (Figure 8-1). 
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Figure 8-1. Stakeholders’ perspectives on barriers to Smart-Buildings implementation. Source: IEA EBC Annex 81 Men-
timeter Survey 

Capturing relevant context, highlighting what has worked in practice and acknowledging the challenges en-

countered and lessons learnt are crucial to understanding the potential for technology innovation adoption, 

devising implementation pathways, and possibly catalysing innovation in the space (Figure 8-2). Real world 

exemplars of data-driven implementations are being compiled as part of the Annex 81 activities. The role of 

case studies is significant to reconcile the gap between a new technology (or approach) and its implementa-

tion in practice. Collection of case studies is an approach to mapping the landscape and it has been used in 

other similar contexts (for example, in the Historic Building Energy Retrofit Atlas developed in the IEA SHC 

Task 59/EBC Annex 76 project [HiBERTool, 2022]). 

 

 

Figure 8-2. Stakeholders’ perspectives on how Annex 81 can accelerate innovation in the space. Source: IEA EBC Annex 
81 Mentimeter Survey. 
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The case study exercise undertaken aims to provide evidence to support knowledge and technology transfer, 

contextualised to enhance the accelerated adoption of such technologies in current practice. The case stud-

ies collected map the current technology and innovation landscape in non-domestic smart buildings and data-

driven building services. The body of information generated aims at gathering evidence and narratives on 

the technical details, business cases, implementation journeys (e.g., benefits and disbenefits, challenges, 

lessons learnt and unintended consequences) and stakeholder stories associated with real-world implemen-

tations. The information collected is showcased open access on a dedicated website [Ruyssevelt et al., 2022] 

to generate reference knowledge primarily aimed at non-technical audiences, besides providing valuable 

inputs to support the definition of the tools developed within other Annex activities.  

8.2 Methodology for case studies and business models collection 

To understand any innovation’s potential for adoption and success, it is necessary to capture the relevant 

context. In this regard, the case studies and business models exercise undertaken sought to a) collate 

knowledge gained from early adopters to understand the value proposition for the different stakeholders and 

how this can drive technological and business model innovation; b) distil the knowledge generated so that 

the benefits can be understood by a wider audience and support evidence-based decision making or the 

development of relevant policies. Either a particular building, technology or dataset could constitute a case 

study. The latter is particularly important as there is a clear need for datasets openly available - within a 

separate activity in the Annex, a catalogue of openly available datasets is being curated. Individually the case 

study descriptions aspire to highlight a particular facet of applying data-driven smart building technologies; 

collectively, the case studies help garner an understanding of the current state of practice and possibly iden-

tify a path forward.  

 

The methodological approach to understanding the current state of practice, needs and challenges for real-

world implementation of data-driven smart technologies involved several activities. These included a) a panel 

discussion comprising researchers, building managers and engineers, and smart-building services suppliers; 

b) interaction with different stakeholders; and c) a constant exchange of information with activities in other 

Annex 81 Subtasks. The stakeholders consulted agreed that: the case study exemplars should focus on 

collecting evidence on data-driven smart technology implementations in real buildings; capture stakeholders’ 

perspectives and context; and summarise emergent business models, applications and specific technolo-

gies/technology stacks in an informative and accessible manner. 

 

Following the initial scoping phase, a two-page template for case study collection was designed through an 

iterative process. A draft case-study template was generated from this knowledge, which was subsequently 

refined through co-creation workshops aiming to test the template with different stakeholder groups and en-

sure it captured relevant information to their field of work. The final template gathers general information on 

the case study, including location, technology installed, data availability and implementation status (Figure 

8-3, top); information on technical details and business models, including project aim, implementation, value 

and business proposition, and impact (Figure 8-3, bottom left); and stakeholder stories and knowledge gen-

eration, including lessons learnt and actors involved in the process (Figure 8-3, bottom right). 

 

The international network of experts participating in Annex 81 and/or their extended network were invited to 

participate in this research voluntarily. Interested participants who have been involved in the decision-making 

or implementation of smart building technologies were invited to fill in the case study template to reflect on 

their experiences. The coordinating team subsequently checked the contribution to ensure completeness of 

information, consistency in the level of detail provided across case studies, and language accessibility for 

non-technical audiences. An iterative email exchange with the contributor(s) was undertaken in case editing 

was deemed necessary before the final publication of the case study online. 
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A dedicated webpage (Ruyssevelt et al., 2022) was developed to host the case study exemplars collected 

and disseminate this information to relevant stakeholders such as academic, industry and government 

groups. Links to any supplementary information, such as visual information (e.g., images, workflows, graphs), 

building plans, models, datasets, publications, and wider project descriptions, are also provided where avail-

able. All material published in the web repository is shared under a CC BY-NC-ND 4.0 license agreement. 

 

Figure 8-3. Case study template. 
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8.3 Synthesis of lessons learnt 

The case studies collected mainly focus on MPC, digital twins, and FDD. The lessons learnt from the nine 

case studies collected at the time of writing this report can be grouped into four main themes: data quality 

and data collection; technology specification and implementation; occupants and thermal comfort; legal im-

plications. 

8.3.1 Data quality and data collection 

Data quality and data collection was the most recurrent theme when discussing lessons learnt. Existing 

buildings are often monitored through several proprietary platforms, introducing data integration and mainte-

nance challenges, for example, to ensure data continuity and quality across different data streams. This may 

represent a significant issue for the smooth operation of real-time tools, where data quality and cleaning are 

essential. 

 

The richness of information is also paramount for simulation applications. One of the challenges in the current 

state of data collection and storage practice is represented by a lack of focus on cataloguing ‘metadata’, with 

the associated risk of limiting data usability. This process is often performed manually by interrogating addi-

tional knowledge sources (e.g., images from the building monitoring system, drawings, and site documenta-

tion) to interpret contextual information of the different data streams and bring meaning to the dataset. Con-

versely, individual equipment metadata (e.g., location, equipment hierarchy, nameplate information, model 

number, serial number) should be digitalised by including location and relevant tags as part of storing oper-

ational/telemetry data. Difficulties (and associated costs) in linking and reusing the data due to lack of meta-

description was observed to potentially reduce the return on investment made to install logic control strate-

gies. 

 

Besides accurate metadata, the availability of a diversified and accurate set of data streams is critical to 

reducing uncertainty in energy simulation. For example, detailed information about occupancy and their in-

teraction with the energy system was deemed crucial. To improve simulation results, submetering (e.g., light-

ing as a separate operation) was also necessary. However, some sensor typologies currently present some 

limitations for such applications. For example, some contributors advise against using infrared technology 

for people counting, especially for large-scale buildings, due to inaccurate measurements and high battery 

power usage. Some concerns were also highlighted with LORA sensors with issues related to the robustness 

of such technology and the current lack of large-scale manufacturing. Similarly, measurement of cooling 

(currently not standard practice) required dedicated, hard-to-install and costly sensors that may be difficult to 

justify. Care in representing complex building geometries, the mix-use of space, and the assignment of 

schedules to different thermal zones was also essential to reduce their contribution to simulation uncertain-

ties. 

 

Digitalisation of data is a prerequisite for the rapid development of building information modelling industry, 

as it allows reducing data loss at all interfaces (e.g., planning, construction, operation) as well as between 

different disciplines (e.g., HVAC planning, control engineering or building automation, facility management). 

Data-driven approaches and ease of reconfiguration are also necessary to ensure a more resilient building 

operation. A case in point is the recent Covid-19 pandemic, where significant changes in building utilisation 

and fast reconfiguration of ventilation systems were critical to increase the supply of fresh air to resume 

operation of shared spaces, such as offices. Available HVAC data from before and during the pandemic 

showed that the higher ventilation rates required (and possibly the associated increase in heating energy 

use in cool climates) increased energy demand throughout the 24-hour period. 
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8.3.2 Project specification and implementation  

 

The limited amount (or, in some cases, lack) of information during the early phases of planning and the 

subsequent reliance on a high number of assumptions were identified as potential barriers to the final quality 

and reliability of data-driven smart technology implementations. Some components may require to be fixed 

at short notice during the execution phase, and adjustments to the complex simulation models (e.g., to reflect 

the changes implemented, undertake debugging and plausibility checks, and produce adequate visualisa-

tions of the results) may be lengthy and impractical. Indeed, decisions are often time-critical and extra time 

entails extra costs, which is always a problem in building construction processes. Additionally, assumptions 

might change during the planning and construction phase, with implications for using design values as sim-

ulation targets. Therefore, design models should be recalibrated with as-built values derived from monitoring 

data. 

 

Several recommendations were made for the commissioning and trial operation phases. These include: the 

definition of suitable overall control strategies and operational modes for the whole system; provision of clear 

documentation for the commissioning phase of all major components (e.g., building automation, energy effi-

ciency/performance targets, set points); functional quality management on component level. The installation 

of a quality management scheme during the trial operation phase was recommended to guarantee an effi-

cient performance of the system; this allows working in synergy with the control engineers to define clear 

major operational modes and procedural steps to be tested. Similarly, operational digital twin models were 

observed to be able to automatically detect several typical problems with the installation of building services 

encountered during the commissioning phase (e.g., hydraulic errors; errors in the control logic). 

 

8.3.3 Occupants and thermal comfort 

 

Many lessons learnt concerned occupants’ interaction with controls and their (perceived) thermal comfort. 

Occupants were more reluctant to accept and adjust to fully automated systems that did not provide them 

with the option for direct control or setting overriding. Similarly, setpoint variations were more likely to be 

accepted when the user did not notice the change. Training and knowledge transfer on the best-practice 

operation of a new data-driven smart technology and associated benefits was recommended as occupants 

may not operate the system as intended (e.g., some occupants favoured opening windows to utilising the 

HVAC system). Such issues are not new, and overwhelming empirical evidence identified similar findings 

both for non-domestic and domestic contexts (Parkinson et al., 2023, Behar, 2016, Salvia et al., 2020). 

 

On some occasions, MPC algorithms were reported to improve the occupants’ thermal comfort only margin-

ally during automated operation. While this may be the case under certain circumstances, MPC algorithms 

offer the major advantage of providing an easy and transparent approach to balance the two conflicting 

objectives of ensuring parsimonious energy use while respecting high level of occupant comfort. Although 

such trade-off may vary between different users and boundary conditions (e.g., building fabric, prevailing 

climate, faultless system), it can be easily adjusted in the MPC implementation as a constraint in its mathe-

matical programming problem. Thus, the adoption of MPC allows moving from an ad hoc approach in the 

building control strategy to a more dynamic and adjustable task-based approach with operational strategies 

that meet the specific needs. 

8.3.4 Legal implications 

 

Given the field’s novelty, the legal implications of new implementations of data-driven smart technologies 

have still not been fully addressed or refined. For example, clear regulation is required in dealing with simu-

lation results in the construction project context, as some information or changes to the functional technical 

description may occur. Another legal issue is related to the operators’ contract, which often contains 
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‘energy saving targets’. These values are primarily measured in relative savings compared to a previous 

period over the first 3-5 years of operation, which is not the best solution. Finally, data collection on occu-

pancy (based on people’s count) and GDPR-related concerns were found to pose some privacy concerns 

in some countries (e.g., Canada), which is still an unsolved issue. 

8.4 Conclusions 

From an analysis of the interim evidence gained from the experiences and lessons learnt of early adopters 

of smart-building technologies, it was clear that there is a general lack of open data from real smart-building 

implementations and widespread agreement on standardisation (e.g., metadata cataloguing, data labelling 

and interoperability) often induce the adoption of ad hoc approaches and proprietary solutions that hamper 

the exchange and reuse of possibly valuable information. Data quality and collection was the most recurrent 

issue reported in the case studies collected and analysed as part of Subtask D.1 activities. Such issues may 

significantly affect several aspects, including the applicability of data-driven algorithms, information extraction 

and inference making, quality and accuracy of predictions, and ultimately costs. 

 

Limited availability of clear narratives, technical details on real-world implementations, and a need for more 

clear articulation of the value proposition were identified as factors hindering the implementation of smart-

building digital technologies at scale. The conservative industrial structure, limited skill integration and wide-

spread siloed thinking typical of this field were recognised to limit the sharing of know-how and best practices. 

Similarly, the engagement of occupants and training was deemed essential to allow people to become famil-

iar with the best-practice operation of a new data-driven smart technology and associated benefits. It was 

recognised that information repositories and positive case studies capturing international perspectives, such 

as those being developed within Subtask D.1, should be encouraged to drive innovation in data-driven smart 

buildings. Finally, privacy concerns, cybersecurity, the perception of losing control, and legal implications of 

novel implementations of data-driven smart technologies in general (e.g., implications of changes to operat-

ing agreements) should be fully addressed or refined to foster more confidence in adopting such solutions. 

8.5 References 

Behar, C. B. (2016). A socio-technical perspective of ventilation practices in UK social housing with whole 

house ventilation systems; design, everyday life and change. PhD thesis, UCL (University College 

London). 

 

HiBERTool. (2022). Historic Building Energy Retrofit Tool. Atlas Interreg Alpine Space Project. Retrieved 

from https://www.hiberatlas.com 

 

Parkinson, T., Schiavon, S., Kim, J., & Betti, G. (2023). Common sources of occupant dissatisfaction with 

workspace environments in 600 office buildings. Buildings and Cities, 4(1). 

 

Ruyssevelt, P., Rovas, D., Gori, V., Chen, G., & Jatkar, H. (2022). Data driven smart building case studies. 

Retrieved from https://datasmartbuildings.org. doi:10.5281/zenodo.7326672. 

 

Salvia, G., Morello, E., Rotondo, F., Sangalli, A., Causone, F., Erba, S., & Pagliano, L. (2020). Performance 

gap and occupant behavior in building retrofit: Focus on dynamics of change and continuity in the 

practice of indoor heating. Sustainability, 12(14), 5820. 



 
 

 100/103 

9. Conclusions 

This report has provided a brief overview of the state-of-the-art in the vast and rapidly developing area of 

Data-Driven Smart Buildings.  

 

Chapter 1 discussed what a Data-Driven Smart Building is. The participants in Annex 81 carried out an 

exercise to identify attributes that are common to Smart Buildings: the “word cloud” shown in Fig. 1.2 shows 

that “adaptability”, “flexibility”, “thinking ahead”, “learning” were some of the most commonly mentioned fea-

tures. Further exploration of the concept underscores that a data-driven smart building should incorporate 

two main elements: (1) real-time interaction between software and hardware in real-time to deliver value for 

the operators; (2) “data pipes” to ensure data quality, which includes: labelling and context (tagging, bench-

marking); a systematic structure for access and discoverability; and provisions to guarantee consent, privacy 

and cyber-security. After presenting common features of this type of building that make them distinct, a def-

inition emphasizing the “data-driven” aspect was proposed, considering that other individuals and organiza-

tions have developed definitions of the concept of Smart Building.  

 

Chapter 2 addressed the topic of data platforms. For data to be helpful for any application, it needs to be 

available somehow on a suitable platform. There are significant challenges regarding the lack of standardi-

zation of information flow in the building operation field, especially across the numerous building systems 

(HVAC, lighting systems, security, etc.). Open access platforms promise to be a solution in this direction. 

Data “production” significantly depends on the complexity of the control system, which may range from simple 

local control to advanced SCADA systems, including machine learning and AI features. Furthermore, so that 

data can be used, it should be made available to potential users: data deployment may range from any format 

(a simple PDF file containing tables of values) up to easily discoverable, interlinked data. Finally, the concepts 

of “data swamps” and “data lakes” were compared. In a “data swamp” data is stored in a siloed, fragmented 

way, is hard to find, is available in a rigid format, and is of rather poor quality; in contrast, in a “data lake”, 

data is clear, well-structured, easy to find, well-explained, easy to access and easy to understand.  

 

Chapter 3 discussed data information management strategies. The critical concept of metadata (“data 

about data”), presented in Chapter 2, is discussed in depth. So that data can be used in diverse applications, 

detailed descriptive information about it is required. However, the lack of standardized and precise “tagging” 

for the building data is one of the core challenges in the field. The problem is further complicated by the 

unescapable fact that buildings vary enormously, and it is challenging to generalize solutions obtained in one 

case for other buildings. Moreover, buildings are complex and contain numerous systems and subsystems, 

but not all the data is essential for a specific application. Finally, buildings are dynamically evolving entities; 

data must grow with them so that the information obtained remains valid.  

 

Metadata standards for buildings, i.e. systematic methods to describe the variables of a dataset and their 

ontology (meaning and relationships), are presented and discussed in detail. Some of these standards, which 

include both open-source and private initiatives, are Project Haystack, Brick, RealEstateCore, and Google 

Digital Buildings. ASHRAE is developing its own metadata standard. The adoption of metadata standards in 

building operation confronts several significant obstacles: the novelty of the technology and the resulting 

limited uptake by digital control systems, the multiplicity of standards, and the lack of turnkey solutions. It is 

pointed out that, in comparison, data management itself is “easy”.   

 

The second topic discussed in Chapter 3 was the integration of data and metadata into existing software 

platforms. Again, the heterogeneity of buildings is a challenge but also an opportunity. One source of 

metadata is provided by building information models (BIMs); while still rarely found and of variable quality, 

they are the best and most structured representation of buildings. Building operational systems, such as 
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building automation systems (BAS) and energy management systems (EMS), also provide metadata. Still, 

these descriptions are alphanumeric strings that do not follow a standard format and contain limited infor-

mation. The metadata extraction from these labels has been investigated using techniques such as direct 

extraction or translation between ontological representations. Inference-based techniques have been ex-

plored to benefit from more unstructured information by learning from human experts, perturbations to better 

understand which variable responds, relationships between equipment, etc. 

 

Chapter 4 tackles one of the main applications of data for buildings: data-driven controls. Model-based 

predictive control (MPC) is discussed, addressing specifically the creation of models for this application. MPC 

is a control approach whereby a model of a system is used to predict the result of different control actions. 

An optimization routine is then used to select the best course of action according to a specific objective, such 

as energy use, peak electric load, and GHG emissions. 

 

The fundamental step in MPC is the creation of an appropriate, reliable model, which is a “good enough” 

reflection of the behaviour of a building or one of its systems. As per an informal survey carried out among 

the participants of the Annex, there was a general agreement that model development is the most time-

consuming activity in MPC and one of the main challenges for adopting this technique as a mainstream 

practice. Models used in control applications are often classified into three categories with somewhat blurry 

boundaries between them: white-box models, developed from fundamental principles (e.g., heat transfer and 

thermodynamics) and a description of the layout and materials of the building; black-box models, providing 

mathematical correlations between inputs and outputs datasets; and grey-box models, a sort of compromise 

between the first two kinds, in which a simple model with relatively few parameters is calibrated with existing 

data. In recent years, the availability of large datasets and the development of machine-learning techniques 

have boosted the utilization of black-box models. Techniques for the creation of grey-box models are dis-

cussed in detail. Grey-box models are also a popular option for MPC, but their system identification (i.e., the 

determination of the value of their parameter) can be quite challenging. Reinforcement learning (RL) has also 

emerged in recent years as a machine-learning concept in which the results of numerous control scenarios 

are assessed in terms of their performance, and a score (reward/punishment) is attributed to each control 

strategy. Since RL relies only on data from the results of control scenarios, it is sometimes referred to as a 

“model-free” method. In the case that not enough data is available, a virtual “gym” (a reliable, general digital 

twin) can be used to “train” the RL algorithm and assess the performance of different control strategies.  

 

Chapter 5 discussed some technical challenges of deploying data-driven control strategies in a building. The 

relationship between forecasting and control is discussed in detail, including the need to forecast solar radi-

ation appropriately for short-term responses and implementing outdoor temperature forecasts. This chapter 

also discusses different approaches to MPC. The most common one is by far “mean value-based” MPC, the 

simplest method, usually based on an economic objective (economic MPC). Linear quadratic MPC involves 

other “regularisation” terms that help minimize the impact of the variance of the input signal. One of the 

challenges mentioned is that multi-zone systems may be difficult to control due to the lack of information 

about measurements in individual rooms.  Distributed MPC is also cited as an alternative approach for multi-

zone systems. After presenting an example of MPC applied to a Danish school building, Chapter 5 ends with 

the presentation of the concept of hierarchical controls using flexibility functions and the Minimum Interoper-

ability Mechanisms as the basic information blocks to create an energy market for buildings in the context of 

energy exchange with the grid, zooming in and out at differentl hierarchical levels. 

 

Chapter 6 thoroughly overviews data-driven fault detection and diagnosis (FDD) in building systems. First, 

the steps required before FDD can be implemented are described. After data collection and cleansing (which 

may include imputation methods to insert missing values in incomplete datasets), a pre-processing phase 

occurs: pre-processing involves feature selection (i.e., which variables are relevant among the thousands 

available), data scaling, partitioning, etc.  Then a baseline, representing “business as usual” operation, is 



 
 

 102/103 

required. It is well known that buildings rarely operate as intended. Therefore, identifying faults requires de-

tecting significant deviations from a baseline (which will be different in heating and cooling modes). 

 

With a clean, pre-processed dataset, and an established baseline, the fault detection phase takes place. 

There is a wide variety of methods for fault detection, which may be classified into three categories: super-

vised, semi-supervised or unsupervised. In supervised methods, labelled fault data is used along with data 

under normal operation. In semi-supervised methods, only limited labelled data is available. Finally, in unsu-

pervised methods, no fault labels are required; these methods (clustering algorithms, PCA) are useful for 

discovering hidden correlations within the data and are the easiest ones to implement.  

 

Fault diagnosis goes one step further. Identifying the source of a fault is often more complex than detecting 

whether a fault exists. Bayesian network models that use observation to confirm or refute beliefs about the 

potential cause of a fault are popular. Other methods for diagnosis include “fault-trees” (based on a decision 

tree and multiple “if statements”) and other machine learning methods (SVMs and ANNs). Finally, fault prog-

nosis predicts the likely course of a condition in the system and can be used in predictive maintenance. After 

reviewing the vast number of systems to which FDD techniques are applied and presenting evaluation met-

rics for these techniques, the chapter concludes by discussing challenges in this area (such as deployment, 

scalability, interpretability and cyber security), potential solutions are provided (e.g., validation of FDD, trans-

fer learning and metadata schemas, Bayesian Networks and cyber-resilient control schemes). 

 

Chapter 7 addresses one of the most promising applications of data in buildings: the interaction between 

buildings and the grid (Building2Grid). Buildings have a significant potential to help regulate the load in the 

electric grid. In this context, the concept of energy flexibility (the capacity of the building to adapt its response 

to the needs of the grid) is essential. This can occur in two ways: via direct control or indirect control (by 

using incentives).  

 

It has been estimated that B2G services can lead to $100-$200 billion in savings in the US. The technology 

readiness level (TRL) of B2G ranges from 5 to 8. Most technologies are relatively mature. However, signifi-

cant policy barriers and a lack of business models are substantial challenges.  The concept of flexibility 

market has been put forward to address this issue. Commercial initiatives have taken place in Europe and 

North America for residential as well as commercial and institutional buildings. For example, 4.3 million cus-

tomers in France have signed up for a variable tariff program for domestic hot water; in the UK, a private 

energy provider is popularizing spot prices for households linked to smartphone apps; in Central Europe, a 

a capacity aggregator uses a “virtual power plant” combining the capacities of hundreds of consumers.  

 

As in other applications, apart from the clear challenges with business models, and the lack of a regulatory 

framework, cybersecurity is one of the primary concerns. In terms of R&D, large-scale pilot projects are 

needed (including an extensive portfolio of energy end-users 

 

Chapter 8 provided an overview of the methodology developed for collecting real-world data-driven smart 

building case studies and a summary of interim evidence gained from the experiences and lessons learnt 

of early adopters of such technologies. It was recognised that information repositories and positive interna-

tional case studies exemplars such as those gathered in this work play a significant role in mapping the 

landscape and provide evidence to reconcile new technologies and their implementation in practice.   

It was evident that the exchange and reuse of possibly valuable information from smart-building implemen-

tations are often hampered by a general lack of open data and standardisation. Indeed, such issues may 

have repercussions, for example, on the applicability of data-driven algorithms; information extraction; infer-

ence making, quality and accuracy of predictions. Other barriers to the implementation of smart-building 

digital technologies at scale were identified in not so clear articulation of the value proposition; limited avail-

ability of clear narratives, sharing of real-world technical details and know-how; and integration in the current 

state of practices. Occupants’ engagement and training were also deemed essential for people to familiarise 



 
 

 103/103 

themselves with best practice operation of new technology and associated benefits. Finally, novel legal im-

plications stemming from new smart technologies should be fully addressed or refined to foster more confi-

dence in such solutions.  


